

Open Call 4c

ARES: A Next generation Erasure Coded, Shared Distributed Storage
System

Deliverable 3: Experiment Results and Final Report

Authors Nicolas Nicolaou, nicolas@algolysis.com, Algolysis Ltd
Theophanis Hadjistasi, theo@algolysis.com, Algolysis Ltd
Andria Trigeorgi, an.trigeorgi@gmail.com, Algolysis Ltd

Due Date 01/08/2022
Submission Date 01/08/2022
Keywords distributed storage, atomic memory, shared objects, fault toler-

ance, consistency, erasure coding

Deliverable 3: Part I
Analysis, results, and wider impact

1 Abstract

Distributed Shared Storage Services, is the building block to yield complex, decentralized,
cloud applications in emerging technologies (e.g., IoT, VR/AR), as they may offer a transparent
cloud storage space where distributed applications can store, retrieve, and coordinate over
shared data. In this project, the EU-US team performed experimental evaluations on the per-
formance of a novel protocol ARES [1], which implements an Atomic Distributed Shared Stor-
age space over asynchronous, failure prone, message passing network nodes, and it ensures
data availability and survivability. Armed with extensive prior experience on the field of Dis-
tributed Computing, the US team led while the EU team led the development, deployment,
and execution of the experiments. The scenarios evaluated ARES’s performance under scala-
bility, resource utilisation, and fault-tolerance, and attempted to identify bottlenecks and
shortcomings that may prevent ARES from being readily applied in a real-time, data-driven,
practical systems. Cross-Atlantic experiments were conducted by reserving network nodes
both in the EU as well as in the US through Fed4FIRE+ testbeds, i.e., VirtualWall (EU), CloudLab
(US), InstaGENI (US), and Grid5000 (EU), and RPi nodes at the premises of the EU partner.
Overall, our experiments demonstrated that ARES performs well, in terms of operation la-
tency, under various environmental conditions, and performs closely to existing commercial
solutions, while preserving strong consistency, fault-tolerance, and longevity.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 1 of (42)

2 Project Vision

Distributed Storage Systems (DSS) store large amounts of data in an affordable manner. Cloud
vendors deploy hundreds to thousands of commodity machines, networked together to act
as a single giant storage system. Yet, component failures, and network delays are the norm,
thus ensuring consistent data-access and availability at the same time is a challenging task.
Vendors often solve availability by replicating data across multiple servers. However, keeping
these copies consistent, especially when they can be accessed concurrently by different oper-
ations, is very difficult and costly. The problem of keeping copies consistent becomes even
more challenging when failed servers need to be replaced or new servers are added, without
interrupting the service. Any type of service interruption in a heavily used DSS usually trans-
lates to immense revenue loss.
Commercial DSS avoid providing strong consistency guarantees as they are considered costly
and difficult to implement in an asynchronous, fail prone, message passing environment. In-
deed, initial implementations of Atomic DSS had high demands in communication, storage,
and sometimes computation. Recent works however, invest in algorithms that may reduce
the overheads on the aforementioned parameters. In particular, there exist algorithms that
reduce the communication cost by trading (cheaper) computation resources. Others propose
the use of erasure coding techniques to reduce both communication overheads and storage
demands in the replica hosts, trading however the number of faults tolerated.
ARES goes one step further and attempts to harvest the efficiency of the proposed algorithms
by incorporating an adaptive approach that allows algorithm switching based on the applica-
tion needs. ARES offers strong consistency guarantees (atomicity), providing the illusion that
data are accessed sequentially when, in reality, multiple processes may read and write the
same data object concurrently. In addition, ARES provides the capability of dynamically chang-
ing the membership of the replica host, enabling the service to stay alive even in the presence
of server failures or server replacement. Atomicity is the most intuitive semantic, which if im-
plemented correctly and efficiently, may relief developers from a major headache of writing
complex code or communication protocols and will provide a transparent shared memory ser-
vice alleviating low level synchronization tasks for distributed applications. By utilizing com-
munication lightweight algorithms via its adaptive nature, together with erasure coding tech-
niques, ARES promises a communication and storage efficient service, which may attract the
attention of potential stakeholders.
The ultimate vision of this project was to provide clear indications for the possibility of deploy-
ing a global-scale shared memory (storage) space, introducing the new concept of Memory-
as-a-Service (MaaS). Through our experiments we deployed nodes in both sides of the Atlantic
and we examined the performance of the ARES protocol in both intra- and inter-continental
experiments. We have put the algorithm under various tests, and we have compared its per-
formance with existing commercial solutions providing a clear reference on the potential use
of ARES in real setups. Overall, our experiments demonstrated that ARES is a promising tech-
nology that may compete head-to-head with existing solutions. Moreover, they helped us
identify shortcomings and bottlenecks of the ARES protocol which will help us to rethink and
redesign aspects of the protocol that will improve its overall performance.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 2 of (42)

3 Details on participants

Algolysis Ltd – Cyprus (EU) – SME

Dr. Nicolas Nicolaou [Algolysis LTD] is the co-founder and a senior scientist and algorithms
engineer at Algolysis. Dr. Nicolaou participated in the project utilizing his long expertise on the
formalization and analysis of Distributed Algorithms for Atomic R/W Storage Systems. He is
one of the main co-authors of ARES, the algorithm which we developed and examined in this
project, and he has been the main architect of multiple efficient algorithms in the field.

Role: Project Coordinator (PC) and Design of Experiments, Implementation of the PoC and the Analysis
of the experimental outcomes.

Dr. Efstathios Stavrakis [Algolysis LTD] is a co-founder and a senior scientist and algorithms
engineer at Algolysis Ltd and has been conducting research in academia and the industry for
15 years. His research is in the areas of computer graphics, animation, virtual reality and
games.

Role: Design, Analysis, and Data Visualization of the experiments.

Dr. Theophanis Hadjistasi [Algolysis LTD] is conducting research in Fault-tolerant Parallel and
Distributed Computing, with emphasis on Distributed Atomic Storage Implementations. His
research interests span “Theory” and “Practice” with a focus on Algorithms and Complexity.

Role: Development and Deployment of the Prototype, and Analysis of the experiments.

Ms Andria Trigeorgi [Algolysis LTD], PhD candidate in Computer Science at the University of
Cyprus and researcher at Algolysis since the beginning of the project.

Role: Development and Deployment of the Prototype, and Analysis of the experiments.

Penn State University – Pennsylvania (USA) – Academic

Dr. Viveck Cadambe [PSU], is an expert on distributed algorithms and erasure coding, and has
previously participated in development of linearizable shared memory emulation algorithms
via erasure coding, as well as provably consistent non-blocking reconfigurable algorithms.

Role: Design & Analysis of the experiments and provide equipment to deploy the experiments.

Dr. Bhuvan Urgaonkar [PSU], brings expertise in systems software, distributed computing,
and performance modelling. He has made contributions to resource management in clouds,
power/cost management of DCs and storage systems.

Role: Design & Analysis of the experiments and provide equipment to deploy the experiments.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 3 of (42)

4 Experiment Description and Implementation Details

The team from Algolysis and the PSU collaborated to develop and test a prototype of a next
generation dynamic, atomic, distributed shared memory (ADSM) service, called ARES. During
the past decade, several ADSM algorithms have been proposed in the literature. Some con-
sider environments where the set of replica hosts remains the same (static), and others allow-
ing that set to change over time (dynamic). All the proposed algorithms are theoretically
proven to satisfy strong consistency guarantees, however only a few have presented experi-
mental findings, and none has been deployed for real use. Compared with previous ap-
proaches ARES offers three unique innovations:

• It is highly fault tolerant: the set of data hosts may change dynamically to mask
transient or permanent failures without any service interruptions

• It is modular: generic modular primitives allow the use of different ADSS algorithms
and data replication policies (including erasure coding) based on the application’s
demands

• It ensures strong consistency: despite operation concurrency and adaptive behaviour,
the shared storage appears as if it is accessed sequentially, imposing a total order on
the read and write operations.

4.1 Experiments Description

Experiments allow to test the performance of ARES across transatlantic deployments, and un-
der various traffic, environmental, and node failure conditions. More precisely, we performed
the following classes of experiments:
SCALABILITY TESTS: Scalability experiments aim to test the ability of the service to maintain
performance while the set of service participants becomes larger. In our scalability scenarios
we modify the number of writers (end users), readers (end users), reconfigurers (end users)
and replica servers.
STRESS TESTS: Stress tests include experiments that test the performance of ARES under var-
ious concurrency patterns, by allowing multiple participants to access shared resources con-
currently. Additionally, these experiments test the performance of the service under various
resource loads, by modifying the size of the data shared among the participants.
FAULT TOLERANCE TESTS: ARES service is fault-tolerant, i.e., it may stay alive despite the ex-
istence of failures among the nodes that implement it. In fault-tolerance experiments, we in-
troduce crash-failures in the system by terminating the operation of a set of server replicas on
specific points in the execution. This helps us verify the fault-tolerance guarantees and the
responsiveness of the service (i.e., measure the time it takes for the service to reconfigure for
preserving liveness in the case of failures).
PERFORMANCE COMPARISON: We examined how the underlying distributed shared storage
algorithm affects the overall performance of the service. We developed and deployed (i) ABD
[2,3] a baseline static algorithm, (ii) Cassandra [7], an open source, distributed, NoSQL data-
base, and (iii) Redis[4], an open-source, distributed key-value store. Comparison with those
implementations provide valuable observations on how ARES competes with existing solu-
tions. Additional details on Cassandra and Redis algorithms, are given bellow.

CASSANDRA [7] is a NoSQL distributed database offering continuous availability, high perfor-
mance, horizontal scalability, and a flexible approach with tuneable parameters. It was initially

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 4 of (42)

developed by Facebook for Facebook's inbox search feature. Today, it is an open-source ap-
plication of Apache Hadoop. Cassandra uses peer-to-peer communication where each node is
connected to all other nodes, forming a logical ring topology. The protocol used to achieve
this communication is gossip, in which nodes periodically exchange state information about
themselves. All the nodes in a cluster can serve read and write requests. Thus, when a request
is sent to any node, this node acts as the coordinator. The coordinator distributes execution
around the cluster, gathers the responses from the replicas, and responds back to the client.
By default, Cassandra guarantees eventual consistency, which implies that all updates reach
all replicas eventually. However, Cassandra offers tuneable consistency for read and write op-
erations, guaranteeing weaker or stronger consistency, as required by the client application.
The required consistency can be achieved by tuning the consistency level (CL) and replication
factor (RF) parameters. RF specifies how many copies of a store object (i.e., a row in
Cassandra’s DB) is kept among the participants. Given RF, the CL controls how many responses
the coordinator waits for before the operation is considered complete. Cassandra is dynamic,
allowing the removal and addition of a single node at a time, in contrast to ARES that allows a
complete modification of the configuration (reconfiguration) in a single operation.

REDIS [4] is an open source, in-memory key-value store. The read/write response time for
Redis is extremely fast since all the data is in memory. Redis is based on Master-Slave Archi-
tecture, i.e., it enables replication of master Redis instances in replica Redis instances. The use
of Redis is rather easy; Redis will internally store the key and value when users execute com-
mands like set key value. Redis returns the value with a simple get key command from the
user. The data size cannot exceed the main memory limit because all the data are in main
memory; Redis starts to reply with an error to write commands when the max memory limit
is reached. Redis has two persistence mechanisms: RDB and AOF. RDB persistence provides
point-in-time snapshots of the database at specified intervals. AOF persistence logs every
write operation. When the database server starts, Redis reads the AOF log to reconstruct the
database. RDB is perfect for backup, but if the RDB stops working all data changes since the
last snapshot are lost. In comparison, AOF has better durability, although adopting AOF per-
sistence may result in performance loss. Redis has a command called “WAIT” in order to im-
plement synchronous replication. This command blocks a writer until all the previous write
commands are successfully transferred and acknowledged by at least the specified number of
replicas. Even with “WAIT” in place Redis can only guarantee eventual consistency as reads do
not wait other than the master node. By [4], usage of “WAIT” ensures atomicity in many cases.

4.2 ARES Implementation

The architecture of our Distributed Storage System (DSS) can be seen in Figure 1. This includes
the modules composing the infrastructure as well as the communication layer between them.
There are two main modules: (i) a Manager, and (ii) a Distributed Shared Memory Module
(DSMM). The Manager module handles the client commands (read and write operations
through the Command Line Interface - CLI) and establishes the gateway to access the memory.
The memory objects are maintained by servers through the DSMM. Notice that, the Manager
uses the DSMM as an external service to write and read objects to the shared memory. To this
respect, our architecture is flexible to utilize any underlying DSM algorithm in the DSMM.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 5 of (42)

Figure 1: The basic architecture of our Distributed Storage System.

An illustration of the implementation components along with the component interconnectiv-
ity for a DSM instance appears in Figure 2. We have implemented two DSM algorithms. First,
we integrated algorithm ABD to our DSM Module. Next, we implemented algorithm ARES with
two different DAPs (ABD and EC) and then we integrated that implementation to the DSM
Module. Notice that the implementation of ARES requires a consensus algorithm to be imple-
mented as well. So, we implemented the RAFT [8] consensus algorithm. For the algorithms
and all the modules implementation Python was chosen as the programming language. For
the needs of the underlying communication protocol, we used the ZeroMQ [5] messaging li-
brary written in Python. Our implementation utilizes an open-source implementation of RAFT,
PySybcObj also written in Python [9].

Figure 2: The implementation components of a DSM Protocol.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 6 of (42)

4.3 Deployment and Testbed Setup

NODE PROVISIONING
To set up our network topology we
used the jFed [16] GUI tool which
was developed within the
Fed4FIRE+ [11] project. We draw a
topology with several physical and
virtual nodes (e.g., Figure 3 shows
an instantiation of server and client
nodes, and one controller). We
configured each node, selecting its
testbed, and disk image. Thus,
based on the resources defined in
the RSpec (a description of the re-
quested resources), the JFed de-
ploys the nodes and executes the
selected testbed.

Platforms & Geographic Locations: We used nodes located both in the EU and the US. In par-
ticular from Europe, we use the GRID’5000 [12] testbed that spans over 8 sites located in
France and Luxembourg; the Virtual Wall [13] composed of >550 servers that can be used as
bare metal hardware and is located in Belgium; InstaGENI [14] of NYU, UCLA, UT Dallas; Cloud-
lab Utah [15], which has a large number of servers, each with relatively modest specifications;
and RPi’s (small nodes) by Algolysis LTD, geo-distributed in Cyprus for demonstrating the ap-
plicability of the protocols in cheap off-the-shelf hardware. All the above testbeds are wide
area deployments that can be readily accessed and used through the FED4FIRE+ (JFed) plat-
form.

REQUIRMENTS INSTALLATION
Once the nodes are defined and initialized the next step was to install the modules required
by our experiments in each node. This is a two-step procedure: (i) we installed the git reposi-
tory with the project code, and (ii) we installed all the required python libraries. To automate
the procedure, we created a script to install the requirements on the nodes. This script accepts
a number of different arguments based on the deployment needs. Additional usage details
are given bellow:

• The testbed name. Available options are Emulab, Fed4fire, and AWS EC2 testbeds. In our
experiments we used the Fed4fire testbed.

• The proxy parameter is used to state if we need a proxy node to provide a gateway
between nodes that do not have routable ips and the internet. For example, for the
installation of requirements on Fed4Fire, we set this parameter to true, as not all the
nodes have public ips. The default value is false.

$ python3 install-requirements.py -testbed <fed4fire|aws|emulab > -proxy <false|true>

 Figure 3: JFed GUI showing an instantiation of
server and client nodes, and one controller node.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 7 of (42)

TECHNICAL DIFFICULTIES

Deploying the code and running the experiments was not an obstacle-free procedure. We
managed to overcome any issues we faced during the deployment and execution of the ex-
periments and luckily, they did not affect the final outcomes. The list of the main difficulties
we faced along with their solution is the following:

o Difficulty: The nodes of VirtualWall 1 or 2 testbeds (a testbed of Fed4Fire) could not be
accessed directly from external machines through the internet.

Solution: To overcome this obstacle we enabled NATting for both VirtualWall 1 or
VirtualWall 2 using a script we created. For example:

o Difficulty: The imec Virtual Wall 1/2 nodes that are used as servers need to be reachable
over IPv4.

Solution: We used an Address Pool on jFed and a script in order to configure the public
IPv4-addresses of the Address Pool to the raw-pcs.

o Difficulty: The nodes of the Grid5000 testbed could not be accessed directly from
external machines through the internet.

Solution: To overcome this problem, we had two possible solutions: (i) we could connect
to Grid5000 nodes through a VPN (using Tunelblick), or (ii) use of a reconfigurable
firewall. Solution (i) is not ideal as it will route the traffic through a single VPN machine,
and this may generate a performance bottleneck. The second solution provides only
routable ipv6 addresses which were not supported by all the other testbeds. Thus, we
decided to use Grid5000 nodes only as clients that only require outgoing
communication.

o Difficulty: Nodes in PSU could not be acquired as the procedure to get access to the
internal VPN of the university was tedious.

Solution: We did not use machines from the internal network of the PSU but rather we
utilized the Cloudlab and InstaGENI testbeds to establish the US network. This was a
change in the initial plans which did not affect the proper execution of the experiments.
In contrast, it was rather beneficial as it allowed us to utilize devices in a wider
geographical area that span throughout the US region.

$ ansible-playbook -i start-nodes/config.ini enable_NATted_IPv4_imecVitualWall.yml

$ python3 configureIPV4ips.py -manifest ../manifest.mrspec -ssh_config ../ssh-config

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 8 of (42)

4.4 Running the Experiments

We used two main tools to execute our initial ex-
periments: (i) jFed [16], and (ii) Ansible [6]. Ansi-
ble is a tool to automate different IT tasks, such
as cloud provisioning, configuration manage-
ment, application deployment, intra-service or-
chestration. There are two main steps to run an
experiment: (i) booting up the Client Nodes (ei-
ther writer or reader) and the Server Nodes in
the testbed, and (ii) executing each scenario us-
ing Ansible Playbook scripts written in YAML lan-
guage. As shown in Figure 4, the scripts get
pushed to target servers from a control machine,
do their work there and then get removed. In our

experiments, one instance node was dedicated as a controller to orchestrate the experiments.

For each round of our experiments, we had to execute 6 Ansible Playbooks in series:
• Playbook 1: we terminate all nodes removing their previously created log files. In addition,

we create a new config file including the current ip addresses of servers and start the
nodes again.

• Playbook 2: a writer invokes a write operation of a specific data object (e.g., file) and the
other writers invoke a read operation in order to retrieve the initial copy of this object.

• Playbook 3: all the readers and writers start invoking operations on the object.
• Playbook 4: acts as a sync mechanism by monitoring all the processes created from

Playbook 3 and it waits until all of them terminate before signalling Playbook 5 to start.
• Playbook 5: we execute a read operation in order to read the final file that the servers

have. To save space, we only save the stats of this file, and not the whole file.
• Playbook 6: we fetch on the control machine all log files that are created from the current

round.

Ansible allows you to choose how you want to control a play's execution (this parameter is
called Strategy). By default, it plays a run with a linear strategy, in which all hosts will run each
task before any host starts the next task, using the number of forks (default=5) to parallelize.
For the Playbook 3 we use the free strategy which allows each host to run until the end of the
play as fast as it can. In our experiments we specify the number of forks to be the total number
of clients and servers.

Cassandra Experimentation: For each experimental round we had to execute the Ansible Play-
books as mentioned above. We install Apache Cassandra 4. For the needs of Cassandra, the
first two Playbooks were customized as follows:
• Playbook 1: It shuts down the cluster and removes any previously created log files. In

addition, it creates a new configuration file including the current ip addresses of servers.
The next task is to (i) edit the replicas nodes by setting the following parameters: seeds,
listen address, rpc address, (ii) restart Cassandra instance, and then (iii) pause for 30
seconds for discovery to work.

• Playbook 2: We use blobs (binary large objects) in Cassandra table. A writer invokes a
write operation of a specific blob (create a KEYSPACE, a TABLE, and send WRITE). The

Figure 4: Run tasks using Ansible.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 9 of (42)

other writers invoke a read request to get this blob. All these requests are made using
the Cassandra-driver Python library. We set the CL to quorum, which means that a
majority of (n/2 +1) nodes of the replicas must respond. Also, we set the replication
factor (RF) to the majority, where the RF is the number of copies of each row.

Redis Experimentation: For each experimental round we had to execute the Ansible Playbooks
as mentioned above. In our set-up we install Redis 5. For the needs of Redis, the first two
Playbooks were customized as follows:
• Playbook 1: It shuts down the cluster and removes any previously created log files. In

addition, it creates a new configuration file including the current ip addresses of servers.
The next task is to (i) set a server as the MASTER, (ii) starting Redis Server Service in each
replica server.

• Playbook 2: We use binary strings in Redis implementation. A writer invokes a write
operation of a specific string (using the set function). The other writers invoke a read
request (using the get function) to get this string. All these requests are made using the
Redis-driver Python library. We run two variants of Redis algorithm, with and without
the WAIT command during a write operation. The WAIT command in Redis blocks the
current writer until all the previous write commands are successfully transferred and
acknowledged by at least a pre-specified number of replicas. We specified this number
with a majority, to match the ABD algorithm.

Experimentation Process Automation: Having to monitor and run the ansible scripts one by
one is a time-consuming process. To automate the process, for each experiment we created
its own script written in python that will take care the process. As an example, we created an
experiment that increases the file size while keeping the readers, writers and servers fixed to
5. Assume the script name is set to execute_file_size_exp.py then its call will be:

With the following arguments:

• Set the fast_op argument to True if you want to enable the fast read mechanism.
• Set the exp_name argument to the name of emulab experiment name, in case you use

the https://www.emulab.net/.
• Set the protocol argument to the algorithm name that we want to run [ARES, ABD,

Cassandra].
• Choose the dap_protocol argument [EC, ABD] only if the protocol is ARES.
• Set the parity number only if the protocol is any variant of ARES with EC chosen as DAP.
• Set testbed type. We currently support Emulab, AWS EC2 and Fed4Fire. In the

experiments of this work, we set this value to Fed4Fire.
• Argument load_policy has two possible values: growingsize and fixedsize. In the first,

writers write at a random file that its size keeps growing and, in the latter, they write at
a random file of fixed size. In these experiments, we set this value to fixedsize.

$ python3 execute_file_size_exp.py -fast_op <False|True> -exp_name <experiment name> -protocol
<ARES|ABD|Cassandra> -dap_protocol <ABD|EC> -parity <parity number for EC> -testbed <emu-
lab|aws|fed4fire> -load_policy <growingsize|fixedsize>

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 10 of (42)

4.5 Logging and Data Collection

GENERETING LOGS
We use python-json-logger library to configure our implementations to log DEBUG and higher-
level messages from clients and servers to .log files on disk. The logs follow a format that
includes the following standard attributes like the asctime, levelname, message, and extra
customised attributes according to the message type.

COLLECTING LOGS
As previously explained, in each experimental round we use Playbook 6 to collect the log files
from each node to the control machine. Then, at the end of all the experiments, we download
the log files in our workspace.

PLOTTING DATA
To plot our results, we use Grafana, an open-source visualization platform that lets you
illustrate data in a variety of graphs and charts (time series, bar chart, histogram etc). To be
able to utilize Grafana we parsed the collected logs and we import the data in InfluxDB, a time
series database. The structured storage of data in InfluxDB, allowed the composition of
complex queries for the generation of a large set of statistical data. A dashboard was created
for each scenario that allowed the researchers to visualize quickly and easily various plots by
dynamically changing the value of a number of variables. The dashboards were then
embedded in the project’s website so any visitor may explore freely the data we collected in
our experiments.

5 Results

Our analytical results aim to expose how a strongly consistent, reconfigurable service like
ARES, compares in performance with the two commercial storages of our choice, namely Cas-
sandra and Redis. Moreover, it helps us identify bottlenecks and shortcomings of ARES for
future optimizations, and, in some scenarios, we demonstrate the ability of ARES to utilize
erasure-coding and to cope with failures and dynamic reconfiguration.

To summarize, below we show the expected Key Performance Indicators (KPIs) that were pro-
posed in deliverable D1, and what was achieved through this experimental evaluation. One
additional KPI was achieved. Additional details are given in the tables bellow.

KPI Measure Target Achieved

1

Scalability Test 1:
Number of processes
to access a single
shared object concur-
rently

Allow more than 250
(read/write) concurrent
processes in the service

Scalability experiments as the number of
readers increases from 5 to 250.
Scalability experiments as the number of
writers increases from 5 to 20.
Thus, the service indeed allows more
that 250 processes concurrently.
(Scalability scenarios)

2

Scalability Test 2:
Examine the perfor-
mance of r/w opera-
tions when modifying

Measure performance
in seconds and expect
linear increment as the
of replica hosts grows.

The experiments of KPI-1 were repeated
for 3 and 11 servers. The linear incre-
mentation is not true for ARES with EC
DAP due to the parity selection.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 11 of (42)

the number of replica
hosts

3

Stress-Test 1: Number
of read operations
completed in a second
(throughput) for ob-
jects under 1MB and
under different concur-
rency and congestion
loads

Strict concurrency to af-
fect negatively the per-
formance of the algo-
rithm while more sto-
chastic (more realistic)
loads will perform bet-
ter.

We created two types of scenarios:

(1) To examine the throughput under
different topologies, i.e., different
combinations of continents (EU, US)
for clients and servers.

(2) To examine the throughput, while
we varied the number of servers
from 3 to 15.

Indeed, the throughput changes de-
pending on the topology.

4

Stress-Test 2: Time to
take a read/write to
complete under differ-
ent object sizes

Keep operations latency
close to the expected
delay of transferring an
object of a predefined
size over a dedicated
connection bandwidth.

We evaluated how the latencies are af-
fected by the size of the shared object.
The object size kept increasing by dou-
bling it from 64 KB to 8 MB.

5
Fault-Tolerance Test 1:
Service Interruption

We expect the service
to experience no inter-
ruptions while allowing
replica failure crashes
to happen concurrently
with reconfigurations.

We introduced two replica server fail-
ures in the ARES algorithm while allow-
ing reconfigurations in the service. No
service interruptions were recorded.

6

Fault-Tolerance Test 2:
Time it takes for the
service to reconfigure
on replica failure or on
replica removal

Measured in seconds
and targeted to be lin-
ear with respect to the
number of concurrent
reconfigurations.

We evaluated the latency it takes for the
service to reconfigure:
(i) while the reconfiguration switches
between different algorithms (i.e., the
ABD and EC DAPs); and
(ii) while the number of reconfigurers
increases from 1 to 3.

7

Performance Compari-
son Test:
Compare the algorithm
performance with
other ADSS

We expect that ARES
may have additional
performance overhead
over simpler solutions
that do not support dy-
namicity or use central-
ized control.

Except from the ARES algorithm with the
two DAPs, we also set-up commercial al-
gorithms, Cassandra and Redis.

EXTRA KPI:

KPI Measure Achieved

8

Stress-Test 3:
Examine the read and write la-
tencies with different numbers of
the fragmentation parameter 𝑘,
in the Reed-Solomon algorithm.

We increased the 𝑘 of the EC algorithm from 2 to 10.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 12 of (42)

5.1 Experimental Evaluation

The table below provides a comprehensive list of the variables we used in our scenarios (as
discussed in Sec. 4.1). Experiments were conducted for a selection of those parameters.

Variable Description Possible Values

topology The distribution of servers in EU and US. For
the scenarios with more than 3 servers we
use two servers in US for every server in EU.

{0E+3U, 1E+2U, 2E+1U, 3E+0U}

Client
Continent

The location of the clients for the through-
put scenario.

{EU, US}

S The number of servers. {3, 5, 7, 9, 11}

W The number of writers. {0, 1, 5, 10, 15, 20}

R The number of readers. {0, 1, 5, 15, 50, 100, 150, 250}

G The number of reconfigurers in the service. {0, 1, 3, 5}

k The erasure-coding data fragments. {1, 2, 3, 4, 5, 6, 7, 8, 9}

fsize The size of the file object. {64 Kb, 128 Kb, 256 Kb, 512 Kb,
1 Mb, 2 Mb, 4 Mb, 8 Mb}

recontype The way the reconfigurers work:
(i) reconfiguring to the same DAP,
(ii) reconfiguring the DAP alternately,
(iii) reconfiguring the DAP alternatively and
servers randomly.

{ sameDAP,
switchingDAP,
switchingDAP&randomServers }

For all the experiments, we used a stochastic invocation scheme in which read operations are
scheduled randomly in the interval [1...rInt] and writes in the interval [1..wInt], where rInt,
wInt = 3sec. In total, each writer performs 50 writes and each reader 50 reads. The reconfig-
urer invokes its next operation every 15𝑠𝑒𝑐 and performs a total of 15 reconfigurations. In
throughput experiments, there is no delay between invokes, and the clients perform 1000
operations each.

Performance of the algorithms is measured in terms of the time it takes for their operations
to terminate. Thus, for each algorithm we measure the average operation latency, starting at
the invocation to the response and taking in account both the communication as well as the
computation overhead. The operation latency is computed as the average of all clients’ aver-
age operation latencies. It is worth mentioning that in the case of Cassandra we omitted to
account some unsuccessful operations, where clients did not receive replies from a majority.

Next, we highlight the most informational outcomes in each scenario. More results may be
found in the website of the project (https://projects.algolysis.com/ares-ngi/results) presented
in interactive plots where the user may choose the parameters to apply.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 13 of (42)

5.1.1 Scalability Tests

This scenario is constructed to compare the read and write latencies of the algorithms, as the
number of service participants increases. We varied the number of readers |R| from 5 to 250
and the number of writers |W| from 5 to 20. The number of servers |S| is set to two different
values, 3 and 11. We calculate all possible combinations of readers, writers, and servers where
the number of readers or writers is kept to 5. In total, each writer performs 50 writes and each
reader 50 reads. The size of the object used is 1 MB. We used a different parity for EC algo-
rithm. The parity value of the EC algorithm is set to m = 1 for |S| = 3 and m = 5 for |S| = 11.

Figure 5: Readers Scalability vs Write Performance, S:3

Figure 6: Readers Scalability vs Read Performance, S:3.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 14 of (42)

Figure 7: Readers Scalability vs Write Performance, S:11.

Figure 8: Readers Scalability vs Read Performance, S:11.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 15 of (42)

Figure 9: Writers Scalability vs Write Performance, S:3.

Figure 10: Writers Scalability vs Read Performance, S:3.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 16 of (42)

Figure 11: Writers Scalability vs Write Performance, S:11.

Figure 12: Writers Scalability vs Read Performance, S:11.

Scalability Results: Results obtained while increasing the number of participants in the system
appear in Figs. 5 –12. At a first glance, CASSANDRA seems to struggle to keep up as the readers
grow in all cases, while REDIS_W does not seem to be affected. Similar observation can be
made for the two ABD based algorithms (ABD and ARES_ABD) as they remain at low levels as
|R| increases. ARES-EC exposes an interesting behavior as it is the worst performing algorithm
when few servers are used, and becomes faster when more servers are deployed. This can be
seen in Figs. 7 and 8. The more the servers the more the encoded elements to be distributed
and the bigger can be the fragmentation parameter k. Thus, each object fragment becomes
smaller, resulting in tremendous benefits on the communication delays. Worth observing is
that the latency of the write operation of ARES_EC matches the one of REDIS_W when |S| =
11. Similar findings can be seen as the number of writers |W| grows (Figures 9-12). CASSAN-
DRA has the larger write latency even though it shows a more stable behavior, and the read
latency of ARES_EC is the worst when |S| = 3.

5.1.2 Stress Tests - Topology

This scenario aims to measure how the performance of the algorithms is affected under dif-
ferent topologies and server participation. In this case we measure the throughput (average
number of operations per second) of each algorithm. To avoid any delays due to operation

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 17 of (42)

contention, we chose to use 2 clients (1 reader and 1 writer), the minimum number of servers
to form a majority, i.e. 3, and a simple object of 32 B. As we deployed machines on both EU
and USA, our servers are split in such a way to either force all of them or their majority to be
in a single continent. We considered two scenarios: (1) we have 3 servers under different to-
pologies; (2) we varied the number of servers from 3 to 15.

Scenario 1: The experiments were performed for 3 servers. The three servers were distributed
based on the topologies listed in the table below. In each topology, xY means that x servers
are deployed in Y continent for E = EU and U = USA. Similarly, we deployed the clients either
close (i.e., to the same continent) or away from the server majority. For each topology we run
2 clients (1 writer and 1 reader), only 1 writer, and only 1 reader. The first and last topologies
multiply each combination much more when they are conducted for both US and EU clients.
The second and third topologies, however, are only made available to EU and US clients, re-
spectively.

Topology Servers in EU Servers in US

0E+3U 0 3

1E+2U 1 2

2E+1U 2 1

3E+0U 3 0

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 18 of (42)

Figure 13: Read Throughput vs Topology.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 19 of (42)

Figure 14: Write Throughput vs Topology.

Figure 15: Throughput vs Algorithm. topology:0E+3U, W:1, R:1.

Figure 16: Throughput vs Algorithm. topology:3E+0U, W:1, R:1.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 20 of (42)

Figure 17: Throughput vs Algorithm. topology:2E+1U, W:1, R:1.

Figure 18: Throughput vs Algorithm. topology:1E+2U, W:1, R:1.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 21 of (42)

Figure 19: Performance vs Algorithm. topology:0E+3U, W:1, R:1.

Scenario 1 Results: Figure 13Figure 14 illustrate the average number of operations per second
(throughput) for each algorithm under different topologies and under different placement of
the reader and writer clients (EU or US).
The three algorithms we developed are shown to achieve their maximum read and write
throughput when the servers and the users belong to the same continent. Also, there appears
to be no difference when the experiment contains concurrent or non-concurrent operations.
Finally, the small fsize (32 B), amplified the impact of the stable overhead of read-config op-
erations, and they constitute a significant percentage of the total operation latency (see blue
bar in Figure 19). From the same figure we interestingly observe that the setup where all serv-
ers and clients are deployed in the USA, favoured ARES and ABD algorithms over both Cassan-
dra and Redis.
On the other hand, CASSANDRA shows different behaviour in the topologies between the read
and write operations. It achieves the maximum read throughput when both servers and clients
belong to the EU. Apart from this, in the write operation, CASSANDRA also succeeds in large
throughput when there is only one writer in both topologies where the servers and clients
belong to the same continent (EU or US). This shows that the read operation of Cassandra is
delaying the write operation when they coexist. REDIS and REDIS_W show similar behavior
according to read operation. They achieve their maximum read throughput in all experiments
where there are both EU servers and EU clients (of any number). They have a large throughput
in the experiments where there is only one writer, and all the participants belong to the US.
However, in the write operation, REDIS with WAIT command (REDIS_W) stops having high
throughput in the last topology (1E+2U).
Figure 15Error! Reference source not found. compare the throughput of the algorithms under
the different topologies when there are both read and write operations. Figure 15 shows that
when both servers and clients belong to the US, our algorithms perform many more opera-
tions per second compared to the three others (CASSANDRA, REDIS, REDIS_W). In the same
topology but with clients in the EU, all algorithms show smaller throughputs, but our algo-
rithms have the greatest reduction. In the topology 3E+0U, the same behaviour continues to
apply for our algorithms and CASSANDRA. However, the two variants of Redis show better
throughput for both clients’ continents. In the remaining two topologies (2E+1U and 1E+2U)
we can see that in the second case where there are EU clients, all the algorithms have better

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 22 of (42)

throughputs, especially the redis variants. As it was expected, in all experiments, REDIS_W
performs fewer operations per sec compared to REDIS (without the wait command).

Scenario 2: This scenario examines the throughput and performance of the algorithms when
the number of servers is growing from 3 to 15. In this case, for every server deployed in EU,
we deployed 2 servers in the USA. Clients were deployed both in the US and the EU.

Figure 20 Write Performance vs Servers Scalability. W:1, R:1.

Figure 21 Read Performance vs Servers Scalability. W:1, R:1.

Scenario 2 Results: Figure 20 and Figure 21 show the results of this scenario for write and read
latencies respectively. As it was expected for such a small size, the ARES algorithm has larger
latencies. Both ARES variants have the standard overhead of the read-config operations which
we have already discussed above. At such a small file size, the ARES_EC may not benefit so
much from the encoding and decoding. However, the ABD algorithm outperforms CASSANDRA
and, in some points, is also better than the two variants of REDIS algorithms. The two Redis
variants are very close to each other.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 23 of (42)

5.1.3 Stress Tests - Object Size

This scenario is made to evaluate how the read and write latencies are affected by the size of
the shared object. The file size doubled from 64 KB to 8 MB. The number of servers is fixed to
11. The number of writers and the value of delta are set to 5; delta being the maximum num-
ber of concurrent put-data operations. The number of readers is fixed to 5. For ARES algorithm
there are two separated runs, one for each examined storage algorithm, ARES_ABD and
ARES_EC. The parity parameter m of ARES_EC is set to 5. The quorum size of the ARES_EC
algorithm is $!!"#

$
% = 9, while the quorum size of ARES_ABD algorithm is (!!

$
) + 1 = 6. For

the CASSANDRA algorithm, we set the replication factor (RF) to the majority, i.e., 6. The writers
of REDIS_W also wait for a majority (6) servers to reply.

Figure 22: Object Size vs Write Performance.

Figure 23: Object Size vs Read Performance.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 24 of (42)

Object-Size Results: The results of these experiments are captured in Figure 22 and Figure 23.
In Figure 22, we observe that the write latencies of all operations, except ARES_EC and RE-
DIS_W, grow significantly as the fsize increases. The fragmentation applied by the ARES_EC
benefits its write operations, which follow a slower increasing curve like the REDIS_W. The
write latencies of all other algorithms are close to each other. Results in Figure 23 show that
read operations of ARES_EC suffer the most delays until 4 MB. It is also worth mentioning that
the first phase of the read operation does decoding, which is slower than the first phase of
the write, which simply finds the maximum tag. However, at larger file sizes (8 MB) CASSAN-
DRA has the slowest read operations. As expected, the REDIS_W read operations provide the
best results, and its write operations with the WAIT command have higher latency compared
to the read operations. However, both of them remain at low levels as the fsize increases.

5.1.4 Stress Tests - Fragmentation Parameter 𝑘

This scenario applies only to ARES_EC since we examine how the read and write latencies are
affected as we modify the erasure-code fragmentation parameter 𝑘	(a parameter of Reed-
Solomon). We assume 11 servers and we increase k from 2 to 10. The number of writers (and
hence the value of δ -- the maximum number of concurrent write operations) are set to 5. The
number of readers is fixed to 15 and the size of the object used is 4 MB.

Figure 24: k Scalability vs Write Performance.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 25 of (42)

Figure 25: k Scalability vs Read Performance.

Fragmentation parameter Results: From Figure 24 and Figure 25 we can infer that when
smaller 𝑘 is used, the write and read latencies reach their highest values. In both cases, small
𝑘 results in the generation of fewer but bigger data fragments and higher redundancy. For
example, consider the cases RS(11,7) and RS(11,6), setting k=7 and k=6 respectively. This im-
plies that we fragment the initial object into 7 and 6 fragments in each case, with RS(11,6) to
have bigger fragments than the ones obtained in RS(11,7). Notice that in both cases each client
waits for $!!"%

$
% = $!!"#

$
% = 9 servers to reply, thus tolerating in both cases 2 server failures.

However, as the fragments are bigger when k=6, this generates an impact on the communica-
tion delay of each operation and thus on their average latency. The write latency seems to be
less affected by the number of 𝑘 since the write operation only encodes and does not decode
the object value, while the read operation does both. In conclusion, there appears to be a
trade-off between operation latency and fault-tolerance in the system: the further increase of
the 𝑘 (and thus lower fault-tolerance) the smaller the latency of read/write operations.

5.1.5 Fault-Tolerance – Server Crashes

In this scenario, we introduced server fail-crashes in the ARES algorithm to verify the fault-
tolerance guarantees and the responsiveness of the system. The number of servers |S| is set
to 11 with m = 5. We varied the number of reconfigurers from 1 to 3. Each reconfigurer
switches between the two DAPs. The numbers of writers and readers are fixed to 5 and 15,
respectively. The size of the object used is 1 MB. We execute 2 crashes during each experi-
mental run: server0 crashes 100 seconds after the start of the experiment and server3 crashes
200 seconds after. Both failed servers are from the imec Virtual Wall 2 testbed (EU), since we
observed that they are included in the most quorum replies.
We assign a unique id to each quorum. However, the quorum size of each DAP was different:
for ARES_ABD is 6, while the quorum size of ARES_EC is 9. In total, ARES_ABD has 462 quorums
and ARES_EC has 55. So, for ease of visualization, we categorize the quorums of the two DAPs
into three groups: Group 0, which includes all quorums; Group 1, which excludes quorums
involving server0; and Group 2, which excludes quorums involving either server0 or server3.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 26 of (42)

Figure 26: Quorum replies to reader6. Server0 crashes after 100s and Server1 crashes after 200s.

Figure 27: Quorum replies to recon1. Server0 crashes after 100s and Server1 crashes after 200s.

Figure 28: Reconfiguring DAP Alternately and 2 Server Fails.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 27 of (42)

Fault-tolerance results: Figure 26 and Figure 27 show to which quorum group (0, 1, or 2) the
responding servers belong when only 1 reconfigurer exists. That is, Figure 26 shows the
quorum group that sends to reader6 every 1 second interval, and Figure 27 the quorum that
sends to reconfigurer1. Until the first 100sec of each operation, the quorum group is 0, e.g.,
all quorums were active in the system. From that moment on, the clients receive responses
only from the group 1, e.g., quorums excluded server0. With the second kill, after 200sec, only
the quorums included in group 2 remain active. Figure 28 shows the read, write, and reconfig
operation latency as the number of reconfigurers increases. During each experiment, the two
server failures took place, but our system kept running without interruptions.

5.1.6 Fault Tolerance – Reconfiguration Performance

The scenarios below examine the performance of ARES when reconfigurations are executed
concurrently with read/write operations. The experiments differ in the way the reconfigurers
work. In the first scenario the reconfigurers introduce a random configuration from a pool of
servers and alternate between ARES_EC and ARES-ABD DAPs in each proposed configuration.
In the second scenario, we reconfigure always to the same DAP. For the second, we have two
separated runs, one for ARES_ABD and one for ARES_EC. In the first scenario the reconfigurers
choose randomly the number of servers from the set {3,5,7,9,11}. The parity value of the EC
algorithm is set to m = 1 for |S| = 3, m = 2 for |S| = 5, m = 3 for |S| = 7, m = 4 for |S| = 9 and
m = 5 for |S| = 11. In the second scenario, the number of servers |S| is kept constant to 11.
In both scenarios, we varied the number of reconfigurers from 1 to 3. The numbers of writers
and readers are fixed to 5 and 15, respectively. The size of the object is 1 MB.
We ran these experiments with two different deployments of the Raft consensus service to
see how the machines’ capabilities affect the speed of reconfigurations. At first, we used an
external implementation of RAFT deployed on top of Raspberry Pi (RPIs) devices, and subse-
quently, we deployed RAFT on nodes of the Emulab[10] testbed.

Figure 29: Reconfiguring DAP Alternately and Servers Randomly (RAFT on RPI).

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 28 of (42)

Figure 30: Write when Reconfiguring to the same DAP (RAFT on RPI).

Figure 31: Read when Reconfiguring to the same DAP (RAFT on RPI).

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 29 of (42)

Figure 32: Reconfig when Reconfiguring to the same DAP (RAFT on RPI).

Figure 33: Reconfiguring DAP Alternately and Servers Randomly (RAFT on Emulab).

Figure 34: Reconfig when Reconfiguring to the same DAP (RAFT on Emulab).

Longevity Results: Firstly, we discuss the results when the RAFT service was run on RPI
devices. Figure 29 illustrates the results of ARES when the reconfigurers switch between DAPs
and change the number of servers randomly. It is possible for a read or write operation to

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 30 of (42)

access configurations that implement both the ARES_ABD and ARES_EC algorithms, when the
operation is concurrent with recon operations. As expected, the write operation has the
lowest latencies compared to the latencies of the other two operations, read and reconfig.
Since a reconfiguration involves more communication rounds, it was expected to experience
higher latency than the other operations. However, all the latencies increase as the number
of reconfigurers increases, since operations need to access more configurations before
completing. In Figure 30 to Figure 32, we can see the results when the reconfigurers change
to the same DAP. Our choice of 𝑘 minimizes the coded fragment size but introduces bigger
quorums and thus larger communication overheads. As a result, in smaller file sizes, the ARES
algorithm may not benefit so much from the erasure coding, resulting in longer latencies for
its read and reconfig operations when using the ARES_EC. Figure 33 and Figure 34 illustrate
results for the same experiments while the RAFT service was deployed on Emulab machines.
We observe that the latencies of the operations have the same behaviour as when the RAFT
was deployed on RPI devices. Thus, manipulating the location of the RAFT service does not
dramatically impact the latencies of the operations.

6 Present and Foreseen TRL

The successful implementation of the proof of concept along with the experimental validation
allowed this project to reach a Technology Readiness Level 4 (TRL4). Algolysis will now be able
to take an informed and data-backed decision on whether the technology is technically feasi-
ble and engage in a longer-term targeted investment. In case the technical and market feasi-
bility is viable, Algolysis will integrate the developed technology into the business strategy of
the company and allocate resources for further development attempting to achieve a Tech-
nology Readiness Level 5-9 (TRL5-9). Ultimately, Algolysis envisions to bring the technology
to the market within a larger Memory-as-a-Service framework which will provide the basis for
advanced, robust, and dependable distributed applications. With the advent of powerful mo-
bile devices, the need for efficient distributed applications is imminent and the time is right
for a tool like ARES to penetrate the global market.

The Academic partner will have the chance to identify weaknesses of the current technology
and explore more efficient solutions, advancing the field into new levels. This may lead to
important scientific publications that will be published in prestige conference and journal ven-
ues, generating a direct impact on the research community.

7 Exploitation, Dissemination and Communication Status

Dissemination and Communication Plan: In this project we committed to a number of dis-
semination activities, proportional to the duration of the project, in order to bring the project
and its experimentation results to the attention of peers, potential industry partners and in-
vestors, as well as the wider public in EU, the US, and elsewhere. Bellow we provide additional
details on the status of the various activities:

• Project Website: A project website was created in order to outline the objectives of
the project. We use the website to announce and record progress and interesting out-
comes from our experiments. The website hosts descriptions and visualizations of our
experimental outcomes. Ultimately, the website aims to expose the project to the gen-
eral public and stakeholders that may have an interest in the developed technology.
Project Website: https://projects.algolysis.com/ares-ngi/

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 31 of (42)

Project Reference Website: https://www.algolysis.com/projects/ngiatlantic-project/
• Social Media: To bring the project to the attention of a larger international community

we posted in the partner profiles’ in popular social media platforms like LinkedIn, Fa-
cebook, Twitter, etc.

• Technical Publications: The current deliverable contains all the details of the imple-
mentation of the project and will be kept internally as a technical report for future
reference. Two scientific publications are expected to emerge from our work in the
project:
(1) A work which carried out in the company and was investigating the use of Shared
Memory technologies (like ARES) in distributed VR applications was published in the
ApPLIED 2022 workshop that was held in conjunction with the Symposium on Princi-
ples of Distributed Computing (PODC). Parts of the implementation developed in this
project were used in that work to establish the underlying communication between
the participating nodes.
(2) We plan to consolidate the final results of the project and submit a manuscript for
publication in the International Symposium on Stabilization, Safety, and Security of
Distributed Systems (SSS 2022). The manuscript will present the project outcomes and
the comparison of the performance of the ARES protocol with Cassandra and Redis
(the two commercial solutions we considered in our work).
Both venues bring together designers and practitioners of distributed systems from
both academia and industry to share their point of view and experiences, so this is a
targeted audience and ideal to expose the results of the project.

• Presentations: Members of the consortium participated and presented the work of
the project in the IoTWeek 2022 conference held in Dublin, Ireland. Apart from the
presentation, the researchers had the chance to network with other participants and
expose the activities and the outcomes of the project to external stakeholders.

Exploitation Plan: The successful implementation of the proof of concept and the
experimental validation (TRL4) allows the partners to plan beyond this project in both the
technical and business fronts. The results of the project proved that the technology is
promising (with respect to existing solutions) and may be exploited further for reaching higher
TRL levels and eventually made available in the global market.

Together Algolysis and the partners in PSU, could co-exploit such an ambitious service and
offer it through connections of the two organisations both in the EU and the US. On one hand
this will provide a great competitive advantage to Algolysis, and on the other hand bringing
research results into practical applications will improve the standing of the PSU and the two
researchers in the impactful index.

We aim to promote the technology mainly to (i) researchers of the distributed computing
community; (ii) developers of distributed applications that may leverage the technology for
simplifying the implementation of data sharing and synchronization modules; and (iii) tech
businesses that are interested in utilizing our memory services for the needs of their real-time,
data and consistency driven multi-user cloud applications (such as massively multiuser games,
worldwide virtual classes, on-demand services, etc.) and emerging technologies (i.e., IoT, VR,
AR etc.), both in a cloud and a peer-to-peer setup. Once the technology matures, it will con-
stitute the one-stop-shop for distributed applications that would like to benefit from cloud-
RAM like services. We believe that distributed applications will become the norm and future

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 32 of (42)

generations will become accustomed with using cloud storage services not only for specialized
applications but even for in-school programming exercises.

The outcomes from our experiments help both partners to showcase the potential of the tech-
nology and thus utilize them to secure further funding (either through investment or EU/US
projects) to further improve the technology. The EU partner has already applied for a national
grant and we plan to apply for Eurostars project, a competitive opportunity for European
SMEs. Moreover, the outcomes will help the partners to attract external collaboration pro-
posals from partners that are interested in embedding the technology in their research pro-
posals or future products. The EU partner has already been invited in a Horizon Europe pro-
posal for the application of the technology in remote VR/AR applications.

8 Impacts

Impact 1: Enhanced EU – US cooperation in Next Generation Internet, including policy coop-
eration.

The teams from the EU and US worked on the investigation of efficient tools that enable per-
formant distributed applications in the next generation of internet. Our outcomes show that
we do possess a promising technology that may complement existing solutions and may raise
the need for the introduction of new standards in the era of distributed applications. The re-
searchers at Penn State University (USA) collaborated closely with the Algolysis LTD (Cyprus,
EU) team, to develop solutions that are being tested in a cross-Atlantic setup. This teamwork
laid the foundation for the next generation international network protocols and further
strengthened the relationships of EU and US partners towards future collaborations.

Impact 2: Reinforced collaboration and increased synergies between the Next Generation
Internet and the US Internet programmes.

The US and EU teams collaboratively devised the scenarios that were executed in this project.
Furthermore, ideas were exchanged during the analysis of the results and the identification of
shortcomings and performance bottlenecks that provide space for further optimization. On
this basis, the partners on this consortium will maintain a close collaboration beyond the end
of this project, to enrich their knowledge and improve over the performance we achieved in
these experiments.
Furthermore, the two partners will seek new application domains for the developed technol-
ogies. The US partner has extensive experience in the design and evaluation of distributed
algorithms and erasure coded storages. On the other hand, the EU partner has experience
with devising state-of-the-art algorithmic solutions related to distributed systems, mobile &
sensor networks, and VR/AR interactive experiences. We aspire to continue integrating and
exchanging our knowledge after the end of this project and attempt to utilize the devised
technology to the different domains of our expertise, reaching a demonstrator that will allow
us to influence technology adoption and policy making.

Impact 3: Developing interoperable solutions and joint demonstrators, contributions to
standards.

This collaboration between the EU and US partners yields an ADSS that operate across bor-
ders, demonstrating a new protocol for robust, and consistent data sharing. At its heart, ADSS

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 33 of (42)

algorithms (like ARES) promote interoperability, as they expose a simple application interface
making them attractive for a large set of Cloud Applications and emerging technologies (i.e.,
IoT, VR, AR etc.). Our implementation and deployment of ARES is one of the few ADSS imple-
mentations that exist at the current stage. Our current deployment is the first practical imple-
mentation of a strongly consistent shared storage service to date. Results from our experi-
ments may trigger the composition of new data sharing standards, across countries, applica-
tions, and digital assets.

Impact 4: An EU - US ecosystem of top researchers, hi-tech start-ups / SMEs and Internet-
related communities collaborating on the evolution of the Internet

The collaboration with PSU is integral for Algolysis (an SME in the South-eastern Med area of
the EU), allowing the company’s researchers to interact, collaborate, and exchange knowledge
with top researchers and engineers in the field. This already provides a competitive advantage
to the company and establishes strong collaborative bonds with researchers from one of the
leading academic institutions in the world.
On the other hand, researchers in PSU had the chance to collaborate with members from a
high-tech startup in the EU which is mostly focused in the production of technologies to be
used in the next generation of applications. Therefore they had the chance to experience the
process that is followed to bring an idea coming from a basic research to a higher TRL.

We strongly believe that both partners gained from this project and will help them to build a
long-lasting collaboration from this point onward.

9 Conclusion and Future Work

As a general finding, achieving strong consistency is more costly than providing weaker se-
mantics as we experienced with Redis and Redis_W. However, the performance gap is not
prohibitively large and future optimizations of ARES may close it enough so as to substantiate
trading performance for consistency. Compared to the atomic version of Cassandra, ADSM
algorithms seem to scale better, but lack behind in the throughput when dealing with small
objects. Both approaches seem to be affected by the object size, but ARES_EC suggests that
fragmentation may be the solution to this problem. Finally, we demonstrated that ARES may
handle efficiently failures in the system, and reconfiguring from one DAP to another without
service interruptions. Also, by examining the fragmentation parameter, we exposed trade-offs
between operation latency and fault-tolerance in the system: the further increase of the parity
(and thus higher fault-tolerance) the larger the latency.

ARES, an algorithm that always offers provable guarantees, competes closely and in many
cases outperforms existing DSS solutions (even when offering weaker consistency guaran-
tees). As a future work, it would be of utmost importance to study how optimizations may
improve the performance of ARES. For example, fragmentation techniques as presented in
[17] may have a positive impact on the performance of the algorithm.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 34 of (42)

10 References

[1] Nicolas C. Nicolaou, Viveck R. Cadambe, N. Prakash, Kishori M. Konwar, Muriel Médard, Nancy A.
Lynch: ARES: Adaptive, Reconfigurable, Erasure Coded, Atomic Storage. ICDCS 2019: 2195-2205.
[2] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message passing systems. Jour-
nal of the ACM, 42(1):124–142, 1996.
[3] Nancy A. Lynch and Alexander A. Shvartsman. Robust emulation of shared memory using dy-
namic quorum acknowledged broadcasts. In Proceedings of Symposium on Fault-Tolerant Compu-
ting, pages 272–281, 1997.
[4] Redis. https://redis.io/
[5] ZeroMQ. https://zeromq.org
[6] Ansible. https://www.ansible.com/overview/how-ansible-works/
[7] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev. 44, 2 (April 2010), 35–40. https://doi.org/10.1145/1773912.1773922
[8] Diego Ongaro and John Ousterhout. 2014. In search of an understandable consensus algorithm.
In Proceedings of the 2014 USENIX conference on USENIX Annual Technical Conference(USENIX
ATC'14). USENIX Association, USA, 305–320.
[9] RAFT Implementation. https://raft.github.io
[10] Emulab. https://emulab.net
[11] FED4FIRE. https://www.fed4fire.eu
[12] GRID’5000. https://www.grid5000.fr/w/Grid5000:Home
[13] Virtual Wall. https://doc.ilabt.imec.be/ilabt/virtualwall/
[14] InstaGENI. https://groups.geni.net/geni/wiki/GeniAggregate
[15] Cloudlab Utah. https://www.cloudlab.us
[16] jFed. https://jfed.ilabt.imec.be/
[17] Georgiou, C., Nicolaou, N., Trigeorgi, A.: Fragmented ARES: Dynamic storage for large objects.
In Proc. of DISC (2022), to appear. Also at arXiv:2201.13292.

11 Glossary

5G Fifth Generation (mobile/cellular networks)
NGI Next Generation Internet
R&D Research and Development
SDN Software Defined Networks
TRUST-IT TRUST-IT (Project Partner)
VNF Virtual Network Function
WIT Waterford Institute of Technology (Coordinating

Partner)
DSS Distributed Shared Storage
ADSS Atomic Distributed Shared Storage
PoC Proof-of-Concept
HO Host Organisation
MaaS Memory As A Service
PC Project Coordinator

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 35 of (42)

Deliverable 3: Part II
Financial and cost information

This part is to be treated as a consortium confidential deliverable, and access is restricted to
consortium partners and EU commission operatives.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 36 of (42)

12 Workplan Progress and Travel Details

WP 1 Start month 1 Duration 6 Total PM 2

Title Project Management

Partners involved Person months

Partner 1 Algolysis LTD (ALGO) - LEAD 1.50 (1.50)

Partner 2 Penn State University (PSU) 0.50 (0.50)

Goal: The goals of this WP can be summarized in the following points: (i) coordination of the project partners
and organization of regular meetings, (ii) reporting to the funding agency (iii) monitoring of project activities
and their timely execution, (iv) address any issues that potentially arise during the project, (v) dissemination
activities for the project outcomes, and (vi) produce all the necessary progress reports and deliverables.

Activities Description:

Task 1.1 – Coordination and Monitoring Activities [ALGO]: Coordinate the researchers and developers
in all partners, to achieve the goals of the project by maintaining a smooth execution of all activities. Monitor
the timely completion of all WPs, within budget, and in compliance to the rules and regulations of the Work
Programme.

Task 1.2 – Financial and Risk Management [ALGO]: Safeguard the appropriate financial management of
the project and time tracking of activities by all participants. Proactively make checks to identify and tackle
potential problems that may arise during the execution of the project. Communicate and collaborate with key
personnel of all partners to resolve issues. No issues found up to this point.

Task 1.3 – Communication [ALGO]: The PI communicated with the Work Programme personnel to deliver
deliverable and seek advice for the smooth execution of the project.

Task 1.4 – Progress Reports [ALGO]: Coordinate with other participants for the preparation of progress
reports. A total of two progress reports (including this one) were prepared until now.

Task 1.5 – Meetings [ALGO, PSU]: The project team has decided to meet monthly via online collaboration
tools (e.g., Slack, Skype) to discuss updates and plan the tasks ahead as the project progresses. The EU
and the US teams had three meetings until now. The European team hold weekly face-to-face meetings, and
more than 10 meetings took place until now. Ad hoc meetings will be held when needed to coordinate over
technical matters.

Task 1.6 – Project Website [ALGO]: A project website is created in order to outline the objectives of the
project and it will be used to record the progress and all the interesting outcomes from our experiments.

Project Website: https://projects.algolysis.com/ares-ngi/

Project Reference Website: https://www.algolysis.com/projects/ngiatlantic-project/

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 37 of (42)

WP 2 Start month 1 Duration 1 Total PM 2

Title Design the Experiment

Partners involved Person months

Partner 1 Algolysis LTD (ALGO) 1.00 (1.00)

Partner 2 Penn State University (PSU) - LEAD 1.00 (1.00)

Goal: The ultimate objective of this WP is to address the design of the experimental scenarios we will run
on the various testbeds. In particular the PSU worked closely with ALGO to define: (i) the environmental and
traffic parameters in the deployment, (ii) the topology of the deployment, and (iii) the metrics to be collected.

Activities Description:

Task 2.1 – Environmental & Traffic Parameters [PSU, ALGO]: In the very first week we defined the
environmental parameters that must take place in the deployment. In particular, we had to define (i) the
appropriate number of participants (replica servers and end-users) in order to test the scalability of the
service, (ii) the timing of the actions of the end-users on distributed shared memory objects in order to test
the performance of the service, and (iii) the number of processors fail-crashes in the system in order to verify
the fault-tolerance guarantees and the responsiveness of the service. Notice that, measurements of the
performance involve multiple execution scenarios. Each scenario is dedicated in investigating the behaviour
of the system affected by a particular system parameter. Thus, to better assess the overall performance of
the service, it was agreed that each scenario will be evaluated against various combinations of system
participants (i.e., increasing/decreasing the number of readers/writers and servers in the system, operation
frequencies, number of failures etc.).

Task 2.2 – Topology [PSU, ALGO]: As per the nature of our experiments it was decided exactly which
infrastructures will be utilized and how many resources will be allocated from each infrastructure (based on
the various geo-locations, machine capabilities and network limitations) for our needs. We wanted the Proof-
of-Concept implementations to be deployed and function in near real-world conditions while utilizing fully
reconfigurable infrastructures.

Task 2.3 – Metrics [PSU, ALGO]: We had to investigate which metrics are most suitable to be considered
to evaluate the performance of the various algorithms based on our KPIs. It was agreed that the efficiency
of the algorithms will be assessed using the following metrics: (i) read and write operation latency including
both communication delays and local computation time, (ii) reconfiguration latency for all the dynamic algo-
rithms, and (iii) an empirical verification of the responsiveness and consistency of the ADSS.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 38 of (42)

WP 3 Start month 2 Duration 5 Total
PM 3.75

Title Develop and Deploy the Protocol

Partners involved Person months

Partner 1 Algolysis LTD (ALGO) – LEAD 3.25 (3.25)

Partner 2 Penn State University (PSU) 0.50 (0.50)

Goal: The goal of this WP was to develop and deploy all the protocols on the various testbeds based on the
design practises specified and agreed during WP2. Additional details for each task completed are given
bellow.

Activities Description:

Task 3.1 – Protocols Development [ALGO]: We had to start implementing one by one the various
protocols that will be tested in the experiments. Up to the first half of the project we were able to implement
ABD, ARES, and Cassandra. By the end of the project protocols ABD, ARES_EC, ARES_ABD, Cassandra
and REDIS were fully developed and deployed.

Task 3.2 – Local Testing [ALGO]: It was performed in order to verify the proper functionality of the various
algorithms that resulted from task 3.1 before live deployment.

Task 3.3 – Deployment Methodologies [ALGO]: We investigated and designed various methodologies
and implemented various scripts to achieve an easy, fast, reliable and painless deployment procedure of the
experiments on the network testbeds both in Europe as well as in US. We were able to fully deploy our
protocols on four different testbeds (in the EU and the USA), that are supported by JFed: (i) imec Virtual Wall
1/2 (Belgium – EU), (ii) Cloudlab (Utah – USA), (iii) InstaGENI (NYU, UCLA, and Utdallas – USA) and (iv)
Grid5000 [15] (France – EU). In total, we used 39 nodes, where the InstaGENI ones are XEN VMs with
Ubuntu 18.04.1 LTS and routable IPs, and the rest are physical machines with Ubuntu 20.04 LTS.
Additionally, we deployed our testing code on Emulab testbed, and the RAFT consensus algorithm on RPI
and Emulab devices.

Task 3.4 – Live Testing [ALGO]: No work had been done in the first half of the project for this task.
Experimentation on all the real deployments started once Task 3.3 was successfully completed early in the
second half of the project. During this task we performed initial evaluations of our deployment and experiment
execution methodologies.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 39 of (42)

WP 4 Start month 4 Duration 6 Total PM 6

Title Experimentation and Data Collection

Partners involved Person months

Partner 1 Algolysis LTD (ALGO) – LEAD 5.00 (5.00)

Partner 2 Penn State University (PSU) 1.00 (1.00)
Goal: This WP involves running the experiments and collecting the generated data. The collected data were
analysed based on the metrics specified in WP2 and the outcomes were presented in proper visualization
formats. Additional details for each task completed are given bellow.

Activities Description:

Task 4.1 – Results collection and analysis from Emulab [ALGO]: Results were collected from Emulab
testbed and were strictly analysed in order to verify the correctness of their structure and content.

Task 4.2 – Run the experimental scenarios [ALGO]: We performed six types of scenarios. The scalability
scenario was constructed to compare the read and write latency while the number of readers, writers, or
servers increases. We then ran three stress test scenarios: (i) topology, (ii) objectsize, and (iii) fragmentation
parameter k. The topology scenario examined the throughput of the algorithms under different topologies.
The objectsize scenario was used to evaluate how the read and write latencies are affected by the size of
the object. In the fragmentation parameter k scenario, we examined the read and write latencies with a
different number of k (a parameter of Reed-Solomon). In the longevity scenario, we evaluated the read, write,
and reconfig latencies when increasing the number of reconfigurers while also changing the configuration.
Finally, we run a fault-tolerance scenario to verify the service’s fault-tolerance guarantees.

Task 4.3 – Data Collection and Import [ALGO]: We used python-json-logger library to configure our
implementations to log DEBUG and higher-level messages from clients to .log files on disk. In each
experimental round a playbook was dedicated to fetch the log files. We devised a parser written in Python
that gets all the necessary info from the log files and parse them into the InfluxDB (an open-source time
series database).

Task 4.4 – Data Visualization and Analysis [ALGO]: To plot graphs we used Grafana, an open-source
visualization platform that lets you visualize metrics data in a variety of graphs and charts (time series, bar
chart, histogram, etc). We imported the InfluxDB data to Grafana to be able to monitor the metrics in it. We
created visualizations such as plotly, time series, and bar chart using queries and transformations.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 40 of (42)

Travel Expenses

Trip 1 Total Cost €3502,20

Start date 19/06/2022 End Date 23/06/2022

From To

Larnaca, CY Dublin, IR

Costs Flights Accommodation/
Subsistence

Other

Nicolas
Nicolaou

€356,85
Accommodation: €438

Per Diem: 5x€100 = €500
Registration: €337,50

Efstathios
Stavrakis €356,85

Accommodation: €438
Per Diem: 5x€100 = €500

Registration: €575

Participation and presentation of the Experiment results in IoTWeek 2022 in Dublin Ireland.

Dr. Nicolaou and Dr. Stavrakis participated in IoTWeek 2022 for the dissemination of the outcomes and
the results of the Experiment and the NGI Atlantic project. The visit to the conference allowed the two
researchers to meet with other research groups and EU officials for exposing the current project and also
for identifying future opportunities for exploiting the results of this project and participate in research
consortia. Last, but not least, Dr. Nicolaou and Dr. Stavrakis had the chance to meet with policy makers
and express their opinion for the establishment of future calls for EU and US collaboration, similar to the
NGI Atlantic initiative.

Trip 2 Total Cost €1307,93

Start date 23/07/2022 End Date 26/07/2022

From To

Larnaca, CY Salerno, IT

Costs Flights Accommodation/
Subsistence

Other

Theophanis
Hadjistasi

€337,93 4 x €200 = €800 Registration: €170

Participate and Present relevant work at Advanced tools, programming languages, and PLatforms for Im-
plementing and Evaluating algorithms for Distributed systems (ApPLIED 2022) conference.

Dr. Hadjistasi attended ApPPLIED 2022 Worksop, which was held in conjuction with PODC2022, the most
prestigious conference in the area of distributed computing, to present a peer reviewed work related to
the topic of this project. In particular, the work presented experimental application of the Distributed
Shared Memory (DSM) technology in Network Virtual Environments. DSM is the core technology we
explore in this NGI Atlantic project (# OC04-347) and for which we developed a number of components
within the project’s duration. For the proper implementation of the DSM the work presented in the paper
used ideas and components that we have developed during this project. So essentially the ApPLIED paper
demonstrated the use of the technology we develop in our experiments in the interesting and high impact
domain of NVE and VR environments.

NGIatlantic.eu | D3 Experiment results and final report

© 2020-2022 NGIatlantic.eu Page 41 of (42)

13 Funds Utilisation Report

Cost Title Amount Description

Personnel cost(s)

€49350 WP1:
Nicolas Nicolaou 1 PM @ 5600 = €5600
Efstathios Stavrakis 0.5 PM @ 5600 = €2800
WP2:
Nicolas Nicolaou 0.5 PM @ 5600 = €2800
Efstathios Stavrakis 0.5 PM @ 5600 = €2800
WP3:
Nicolas Nicolaou 1.05 PM @ 5600 = €5880
Efstathios Stavrakis 0.35 PM @ 5600 = €1960
Theophanis Hadjistasi 1.1 PM @ 4200 = €4620
Andria Trigeorgi 0.75 PM @ 2800 = €2100
WP4:
Nicolas Nicolaou 0.6 PM @ 5600 = €3360
Efstathios Stavrakis 1 PM @ 5600 = €5600
Theophanis Hadjistasi 1.65 PM @ 4200 = €6930
Andria Trigeorgi 1.75 PM @ 2800 = €4900

Other Direct Costs – Travel only €4810.13

Total Direct Costs €54160.13

Indirect Costs €13540.03

Total Costs €67700.16

Received Amount €27500

Remaining Amount €40200.16

On behalf of Algolysis Ltd, I, Nicolas Nicolaou confirm that this funds utilisation report is in
accordance with the contract already in place between Algolysis Ltd and Waterford Institute
of Technology under financial support to third parties from Article 15 of Grant Agreement
number 871582 — NGIatlantic.eu. I confirm that this report also includes all the expenditures
(limited to PM and travel) incurred by all partners in this project and adhere to all instructions
contained in H2020 Annotated Model Grant Agreement1. These are referenced in section 3
and 5 of the contract. I also confirm that any applicable VAT or tax payments on the amount
due to the Grant Recipient shall be fully borne by the Grant Recipient.

Signed for and on behalf of Algolysis Ltd

……………………………………………
Full Name: Nicolas Nicolaou
Title: Director
Complete Address: Ellados 12A, Erimi, 4630, Limassol, Cyprus

1
http://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/amga/h2020-amga_en.pdf

