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1 Abstract <Approx 100 words>

Flash flood monitoring systems for just-in-time notification of flooding events will be crucial
to secure any city located in prone flood areas. For this reason, an experimental
implementation of a flood monitoring system has been developed at the University of
Maryland, Baltimore County (UMBC). The EdgeFlooding project aims at extending this system,
which adopts a centralized cloud-based approach, to create a novel implementation that
adopts a distributed approach based on edge/cloud computing. The extension will be carried
out by the University of Pisa (UNIPI) with the support of UMBC. In order to assess the
performance of such system, an extensive experimentation will be carried out by UNIPI using
two Fed4Fire+ testbeds and one testbed available at UNIPI. The experimentation will be
carried out in two phases: a first phase involving only the Grid’5000 testbed, a large-scale
testbed for experiment-driven research in the area of parallel, distributed computing and
cloud, and a second phase involving also external nodes from the Virtual Wall testbed and
from the Fog testbed at UNIPI. The aim of those experiments is to assess whether a distributed
edge/cloud computing approach is feasible, considering multiple image analysis algorithms
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and different edge/cloud configurations. The analysis of the results will ultimately provide a
set of guidelines for the implementation of future systems.

Differences with D2

The last sentence of the abstract has been modified in order to reflect the final experiments
configuration, in particular the study of different image analysis algorithms.

2 Project Vision

The EdgeFlooding project aims at assessing whether a distributed computing architecture
based on the edge/cloud computing paradigm can be adopted for the implementation of a
flash flood monitoring system. Existing flood monitoring systems adopt a centralized cloud-
based approach where monitoring stations are deployed in flood-prone areas and transmit
their data (sensor data and images) to a cloud-based service for analysis. Recently, a novel
computing paradigm has emerged to improve scalability and reliability of cloud systems [1]:
the edge/fog computing. Edge/fog computing extends the centralized cloud computing
architecture by introducing an intermediate computing layer in proximity of the physical
systems. The goal of EdgeFlooding is to develop a prototype of a flood monitoring system
based on the edge/cloud computing paradigm and measure its performance via a set of
experiments. The aim is to highlight the advantages and the drawbacks of adopting such
distributed approach to perform data analysis at the edge, in proximity of the monitoring sites.

The project will leverage an existing implementation of a cloud-based flood monitoring system
developed at UMBC [1]. The system exploits the fusion of multiple data sources (e.g., social
media data and smart camera images) to detect any potential flood events and assess their
impact. A testbed prototype of the flooding monitoring system has been already developed
and deployed in the Baltimore County area. The testbed allowed UMBC to collect a large
amount of data to test and evaluate the efficacy of the prediction algorithm, which has been
demonstrated to be effective.

EdgeFlooding aims at extending the current implementation to obtain a novel implementation
of the system that adopts an edge/cloud approach, where a part of data analysis, namely the
image analysis, is moved at the edge, in proximity of the monitoring sites. The extension of
the original implementation, carried out by UNIPI with the support of UMBC, will restructure
the architecture of the platform in order to organize its modules into microservices, thus
allowing their deployment on different computing nodes. This modular architecture based on
microservices will easily allow to carry out different experiment configurations: one
edge/cloud configuration where the image analysis services are deployed on edge nodes while
the social media and data aggregation services are hosted on the cloud, and one cloud
configuration where all the services are deployed on the cloud as in the original
implementation.
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This extended implementation will be exploited by UNIPI to run an extensive experimentation

to evaluate its performance and assess the feasibility of adopting the edge/cloud approach in
real deployments and measure its advantages/drawbacks. The experimentation will be carried
out using two Fed4Fire+ testbeds and one testbed available at UNIPI and will be organized
into the following two phases. A first phase in which a realistic deployment is emulated using
the nodes of the Grid’5000 testbed?, a large-scale testbed for experiment-driven research in
the area of parallel, distributed computing and cloud managed by a scientific interest group
(GIS) and hosted by Inria. Nodes from different locations of the testbed and with different
computing capabilities will be exploited to emulate cloud computing nodes (top-range servers
with powerful CPUs and GPUs) and edge computing nodes (mid-range servers with less
powerful CPUs and mid-level GPUs). A second experimentation phase, instead, will aim at
assessing the performance when the edge computing layer is implemented with constrained
devices, e.g., a PC or an embedded system. The goal of this second phase is to assess a
different configuration where the edge nodes are installed in close proximity of (or co-located
with) the cameras in locations that are not suitable for the installation of servers. To this aim,
nodes external to the Grid’5000 testbed will be employed, specifically the PCs available at the
Virtual Wall testbed?, a testbed hosted at and managed by imec IDLabt ilab.t in Ghent, and
the embedded systems of the Fog testbed available at UNIPI.

The analysis of the results of the experiments, carried out jointly by UNIPI and UMBC, will aim
at the following: (i) assess the feasibility of adopting the edge/cloud implementation in real
systems and, in particular, verify the feasibility of implementing the image analysis algorithm
on edge nodes; (ii) analyse different image analysis strategies; (iii) measure metrics such as
analysed FPS, latency, bandwidth and CPU/RAM occupation to compare different edge/cloud
configurations and highlight advantages/disadvantages of each one. Such results and
conclusions are expected to be of interest not only for future flood monitoring systems but in
general in the area of environmental monitoring.

Differences with D2

As in the abstract, the last period has been modified in order to reflect the final experiments
configuration and the inclusion of different image analysis algorithms.

1 Grid 5000 tested home page: https://www.grid5000.fr

2 Virtual Wall testbed home page: https://doc.ilabt.imec.be/ilabt/virtualwall/
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3 Details on participants (both EU and US)

The experience and area of expertise of the US and EU teams are essentially complementary:

the research team at UMBC has a proven track record of successful research on the field of

artificial intelligence and machine learning for smart systems in general, while the research

team at UNIPI has proven experience on distributed systems, loT systems, edge/fog

computing and, in general, on experimental evaluation exploiting real testbeds. UNIPI and

UMBC have long experience in carrying out large research projects, as highlighted by the short

biographies of the PIs and the team members, reported below.

Member Role Short Bio
Carlo Vallati | He is the Pl of the | Dr. Vallatiis currently Assistant Professor
(UNIPI) EdgeFlooding project and the | (tenured) at UNIPI’s Department of
Pl of the EU team at UNIPI. | Information Engineering. He received a
He is responsible for the | Master's Degree (magna cum laude) and a
supervision of all the | PhD in Computer Systems Engineering in
activities of the UNIPI team | 2008 and 2012, respectively, from UNIPI.
and for the coordination of | He is the director of the Cloud Computing,
the interaction with the | Big Data and Cybersecurity Crosslab
UMBC team. He is in charge | funded by the Italian Ministry of
of all the dissemination | Education, University and Research. He is
activities carried out jointly | co-author of +60 peer-reviewed papers in
by UNIPI and UMBC | international journals and conferences.
members. His research interests include loT solutions
and Cloud/Fog computing systems. He has
He is responsible for the | peen involved in many national and
development  of  the | international projects and in several
implementation plan (Task 0) | research projects supported by private
and for the analysis of the | industries. Website:
experiment results (Task 3). | http://www.iet.unipi.it/c.vallati/
He is involved in the
adaptation of the flood
monitoring system and the
experimentation tasks (Tasks
1 and 2).
Francesca She is responsible for the | Francesca Righetti is a Postdoctoral
Righetti adaptation of the flood | Research Fellow at the Information
(UNIPI) monitoring system for the | Engineering Department at the University
edge/cloud computing | of Pisa. She received the Master’s and
approach (Task 1) and for the | Ph.D. degrees in Computer Engineering
execution of the experiments | from the University of Pisa, Pisa, Italy, in
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on the testbeds and for the
collection of relevant metrics
(Task 2). Sheisinvolved in the
planning of the experiments
and the data analysis (Task O
and 3).

2017 and 2021, respectively. Her research
interests include the Internet of Things
(loT), the Industrial Internet of Things
(loT) and the Cloud-to-Thing Continuum
(C2TC). She took part in national and
international projects, including the SmarT
INtelliGent RAilwaY (STINGRAY) project
with the ISTI-CNR, Pisa, and the “ECOAP:
Experimental assessment of congestion
control strategies for the Constrained

|II

Application Protocol” project. Website:

http://for.unipi.it/francesca righetti/

Giuseppe He is involved in the planning | Giuseppe Anastasi is a Professor of
Anastasi of the experiments (Task 0), | computer engineering at the Department
(UNIPI) in the supervision of the | of Information Engineering (DII) of the
platform adaptation (Task 1) | University of Pisa, Italy. He is the director
and the execution of the | oftheIndustry 4.0 CrossLab, funded by the
experiment (Task 2) and in | Italian Ministry of Education and Research
the analysis of the results of | (MIUR) in the framework of the
the experiments and their | "Departments of Excellence" program. It
interpretation (Task 3). consists of six interdisciplinary and
integrated research laboratories
(CrossLabs) covering all the key areas of
Industry 4.0. He has been involved in many
national and international projects and in
several research projects supported by
private industries. Website:
http://www.iet.unipi.it/g.anastasi/
Nicola He is involved in the | Nicola Tonellotto is assistant professor of
Tonellotto extension of the flood | computer engineering at the Information
(UNIPI) monitoring platform (Task 1), | Engineering Department of the University
in the execution of the | ofPisa, Italy. His research interests include
experiments on the testbeds | cloud computing, distributed systems, and
and for the collection of | Web information retrieval.
relevant metrics (Task 2) and | Website: https://tonellotto.github.io/
in the analysis of the results
of the experiments and their
interpretation (Task 3).
Nirmalya Roy | He is the Pl of the US team at | Nirmalya Roy is currently an Associate
(UMBC) UMBC. He is responsible for | Professor in the Information Systems

the supervision of all the

department at University of Maryland
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activities of the UMBC team
and for the interaction with
the team at UNIPIL.
involved in the extension of
the flood monitoring
platform  (Task 1) by
providing support to UNIPI.

He is

He is involved in the planning
of the
consultant (Task 0) and in the

experiment  as

analysis of the results (Task
3).

Baltimore County. He directs the Mobile,
Pervasive, and Sensor Computing Lab
(MPSC) at the University of Maryland
Baltimore County. He was a Clinical
Assistant Professor in the School of

Electrical Engineering and Computer
Science at Washington State University
from January 2012 to June 2013. Prior to
that, he worked as a Research Scientist at
Institute for Infocomm Research (I2R),
Singapore from 2010 to 2011. He was as a
postdoctoral fellow in Electrical and
Computer Engineering Department at The
University of Texas at Austin from 2008 to
2009. He received his Ph.D. and M.S. in
Computer Science and Engineering from
The University of Texas at Arlington in
2008 and 2004 respectively. He did his
Bachelors in Computer Science and
Engineering from Jadavpur

India in 2001.

University,

Aryya
Gangopadhyay
(UMBC)

He is involved in the analysis
and interpretation of the
results of the experiments
carried out jointly with UNIPI

(Task 3).

Aryya Gangopadhyay is a professor and
the chair of UMBC’s Information Systems
Department. He has been a faculty
member at UMBC since 1997. He has
published five books and over 125 peer-
reviewed research articles.
Dr.Gangopadhyay’s research interests are
in the area of data science and machine
learning,
based

cybersecurity, multi-modal data fusion for

including machine learning-

solutions in areas such as

emergency response, and healthcare
applications. His research has been funded
by grants from NSF, NIST, US Department
of Education, IBM, Maryland Department
of Transportation, and other agencies.
Website:

https://sites.google.com/site/homearyya/
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Bipen Basnyat
(UMBC)

As the developer of the initial
flood monitoring platform,
he is involved in the platform
adaption (Task 1) to support
UNIPI activities. He is also
involved in the analysis of the
results (Task 3).

Bipendra Basnyat, P.E., is a final-year Ph.D.
student at the UMBC. His research is
focused on the design and
implementation of various elements of
SmartCity components. He is the principal
architect of the FloodBot System. After
successfully integrating hardware designs
and machine learning algorithms and
deploying an end-to-end flood monitoring
system, Bipen now ensures FloodBot's
regular operation and management.

Differences with D2

Nicola Tonellotto role description in D2 did not include his involvement in Task 1 by mistake.
In this revision of the document, the description of his involvement has been updated.
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4 Results

In this section the results obtained by the EdgeFlooding experiments will be presented and
analysed. Before going into the details of the results, a summary of the methodology? to
introduce the minimum set of the details required to fully grasp the results is provided in
Section 4.1. In Section 4.2 a summary of the experiment scenarios is presented, while in
Section 4.3 the metrics measured are outlined. In Section 4.4 the results are presented, while
in Section 4.5 a final discussion and analysis is provided. The section concludes with Section
4.6 that reports some details on the technical issues experienced during the execution of the
experiments that lead to the modification of the original experimentation plan and the
request for one-month extension for the overall duration of the project.

4.1 Methodology

In order to run the EdgeFlooding experiments, a distributed flood monitoring platform has
been implemented, exploiting an initial cloud-based prototype. The platform, released as
open-source project?, is designed using a micro-services architecture: independent modules
interact each other using a message passing mechanism that allows each one to be deployed
in a different host, without requiring changes in the code at runtime. This feature, in particular,
allowed to seamlessly reconfigure the platform with no changes to deploy the cloud and the
edge scenarios.

Shortly, the platform comprises the following components:

e Camera module. This module emulates a surveillance camera generating video frames

at a fixed rate, 5 FPS. The frames generated by the module are extracted from the real
videos to ensure the generation of realistic data.
e Inference module. This module implements the image analysis functionalities. The

initial implementation was based on the Inception convolutional neural network
version 3 [2] for the image analysis. The initial set of experiments, however, shown a
high complexity of this model, thus highlighting the need to investigate also different
models. To this aim, other two implementations were developed and testbed based
on two other neural network models, Mobilenet [3] and YOLO version 5 [4],
respectively. The inference module periodically receives video frames from one or
more camera modules and analyses them exploiting one or more GPU accelerator(s)
locally available on the node. At the end of the analysis the result of the inference is

3 For a detailed introduction on the methodology adopted and the implementation of the platform the interested
reader is referred to Deliverable 2: Report on Experiment Implementation and Execution

4 EdgeFlooding platform code repository: https://github.com/EdgeFlooding/EdgeFloodingPlatform
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transmitted as a message to the aggregator module. The message includes the result
of the inference and the list of objects detected on the frame with the corresponding
inference probability. In order to support multiple camera sources submitting frames
at the same time, a set of queues (one for each video source) is implemented on the
inference module to store frames received from different sources. If all the GPUs are
already processing frames, a frame is enqueued and waits for the completion of the
current analysis. As soon as one GPU completes its analysis, a frame is removed from
one queue and submitted to the GPU. A round robin policy is implemented to extract
frames from the different queues to ensure fairness in the analysis of the frames from
different cameras. Considering that the system aims at analyzing the frames in real
time, the queue length of each camera is set to only one frame. This means that when
a new frame is received, the older frame is discarded, if any, and the newer frame is
enqueued. Different values of the queue size have been considered in our
experiments, however, since we didn’t notice a significant change in the obtained
results, for the sake of brevity, we will show only the results obtained with the queue
size set to one frame.

e Aggregator module. This module aggregates the results received by the inference

modules and implements the social media monitoring functionalities. The module
implements two distinct functionalities: a data aggregator that analyzes and stores the
data received from the inference modules and a social media scraper that monitors
Twitter for posts containing pre-defined hashtags.

Cloud Scenario

Aggregator
Module
l" Camera Inference
Module Module

oy )

WAN _—

Edge Scenario

ll' Camera Inference Aggregator
Module Module Module

LAN WAN

Figure 1. Platform module deployment
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EdgeFlooding aims at implementing two different scenarios, i.e., a cloud scenario and an edge
scenario. They are implemented through two different configurations of the platform that
differ each other on how the modules of the platform are deployed (see Figure 1):

e The cloud scenario, where image analysis, data aggregation and social media analysis
are performed at the cloud layer. In this scenario the inference module and the
aggregator module are deployed on the same node emulating the cloud layer.

e The edge scenario, where image analysis is performed at the edge layer, while data
aggregation and social media analysis is performed at the cloud layer. In this case the
inference module is deployed on nodes (one or more) emulating the edge layer, while
the aggregator module is still deployed on the node emulating the cloud layer.

In both the scenarios, a third node is reserved to emulate the cameras. On this node, multiple
instances of the camera module are instantiated to emulate different cameras generating
different video streams.

4.2 Experiment scenarios

In order to assess the performance of the system under heterogeneous hardware
configurations for both the cloud and edge scenarios, nodes from three different testbeds
have been exploited in the experiments:

o The Grid’5000 testbed, a large-scale testbed that includes multiple sites in France. The
testbed is composed of powerful servers, each one equipped with one or more GPUs,
both high and mid-range GPUs. This testbed is exploited to emulate the cloud
infrastructure exploiting powerful servers with multiple CPU and large RAM availability
with high-range GPUs. In addition, the testbed is used also to emulate an edge layer
configuration, through servers with less CPU and RAM resources equipped with mid-
range GPUs. This configuration emulates a resource-rich edge infrastructure.

e The Virtual Wall testbed, a single-site testbed located in Ghent, Belgium, that hosts
computing nodes with less CPU and RAM capabilities than the servers of Grid’5000 and
are equipped with entry-level GPUs. The testbed is employed to emulate a less
powerful edge layer.

e The Fog testbed, a testbed located at the ‘Cloud Computing, Big Data and
Cybersecurity’ laboratory at the University of Pisa, Italy, that includes embedded
boards. Those boards are characterized by very limited CPU and RAM and integrates
an embedded GPU with limited capabilities. Different boards are considered in our
experiments, each one with different resources and cost.

In all the scenarios, the aggregator module is deployed on a powerful server on the cloud,
while one or more inference modules are deployed on different nodes, according to the
specific scenario considered. In each experiment, the camera module, required for the
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generation of the video streams, is deployed on the same testbed of the nodes where the

inference modules are deployed to emulate spatial proximity.

In the following table (Table 1), the different scenarios considered in the experiments are

summarized. For each scenario the node used for deploying the inference module is reported

along with the resources available on each node. In each scenario, nodes have been selected

mainly for the capabilities of the GPUs, which represent the bottleneck for the execution of

the inference module.

Table 1. Experiment scenarios.

Scenario Image analysis node Resources available

Cloud -1 Grid’5000 - Graffiti CPU: 16 cores RAM 128GB GPU:
4 x Nvidia GeForce RTX 2080 Ti

Cloud -2 Grid’5000 - Grouille CPU: 64 cores RAM 128GB GPU:
2 x Nvidia A100

Near Edge Grid’5000 - Chifflet CPU: 28 cores RAM: 768GB GPU:
2 x Nvidia GTX 1080 Ti (only one
GPU enabled)

Far Edge Virtual Wall — Gpunode2 CPU: 6 cores RAM: 12GB GPU:

1 x Nvidia GTX 980

On-site Edge — 1

Fog — NVIDIA Jetson Xavier

CPU: 8 cores ARM RAM: 32GB
GPU: 512-core Volta GPU

On-site Edge —2

Fog — NVIDIA Jetson TX2

CPU: 4 cores ARM RAM: 8GB
GPU: 256-core NVIDIA Pascal™
GPU

On-site Edge — 3

Fog — NVIDIA Jetson NANO

CPU: 4 cores ARM RAM: 4GB
GPU: 128-core NVIDIA Maxwell
GPU

© 2020-2022 NGlatlantic.eu

Page 10 of

56

Co-funded by the Horizon 2020
Framework Programme of the European Union




NGlatlantic.eu | D3 Experiment results and final report m ATLANTIC.EU

SMART

CAMERAS :  ONSITE NEAR EDGE CLOUD
& f A
95\\ : > - -

Figure 2. Experiment scenarios considered

As can be seen, four main scenarios are considered in the experiments (see Figure 2):

e A cloud scenario, where the inference module is deployed on a powerful node, with
multiple high-range GPUs. This scenario emulates the deployment of the module on
the cloud layer and it is implemented with nodes from the Grid’5000 testbed

e A near edge scenario where the inference module is deployed on a server with a mid-
range GPU. If multiple GPUs are available on the node, the module is programmed to
exploit only one GPU, to further reduce the computing capability. This scenario
emulates an edge layer deployed directly at the edge of the internet service provider
network, e.g., through a ‘datacenter in a box’ deployment and it is implemented with
nodes from the Grid’5000 testbed.

e Afaredge scenario where the inference module is deployed on a computing node with
a low-range GPU. This scenario emulates a far edge deployment implemented through
a single server installed in a certain area in proximity of the cameras and it
implemented with nodes from the Virtual Wall testbed.

e An on-site edge scenario where the inference module is deployed on an embedded
system with limited resources and an integrated GPUs. This configuration emulates an
on-site edge node to be installed directly in the same site of the camera and it is
implemented with nodes from the Fog testbed at UNIPI.

For the cloud and on-site scenarios, different configurations have been considered, in order
to assess the performance for a different number of GPUs available on the server in the cloud
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scenario or with embedded systems GPUs with different capabilities in the on-site edge
scenarios.

For each experiment a varying number of video sources C, i.e., C=1, C=5, C=10, has been
considered while the number of edge nodes e was fixed to one on the edge computing
scenarios, i.e. e=1. A set of experiments with more than one edge node (i.e., e=3) to assess
the scalability of the system when the number of edge nodes increases is run for a subset of
the experiments.

Every scenario is repeated independently 3 times. In the following only the average results are
reported, while 95t confidence intervals are removed as they are very small, due to a very
low variability on the results between different replicas.

4.3 Metrics

The following table (Table 2) reports the metrics measured in the experiments and their
precise definition.

Table 2. Performance metrics.

Metric Name Unit Definition

Analyzed FPS |Frames per| The average number of video frames analyzed per second
Second by the overall system

FPS per camera |Frames pet| The average number of video frames analyzed per second

Second by the system per video source

Average seconds The average time between the analysis of two subsequent
processing time frames from the same video source

per camera

Data Bytes The overall amount of data transmitted from the cameras to
transmission the cloud (in the cloud scenarios) and from the cameras to
overhead the edge and from the edge to the cloud (in the edge

scenarios)

GPU, CPU and [Percentage | The average GPU, CPU and RAM utilization percentage

RAM utilization over a period for a node (both cloud and edge)

Data milliseconds | The time between the triggering of a data aggregation
aggregation process and its completion. The data aggregation process
latency is a process that aggregates data from different video feeds

and from the social media analysis process.

Frame analysis |milliseconds | The average time required for the analysis of a single frame
delay on the inference module. The delay includes: Inference
time, the time required for the analysis of the frame, and the
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4.4 Experiment results

In this section, the results of the EdgeFlooding experiments are presented. As highlighted in
Section 4.2, the initial implementation of the inference module was based on a cloud-based
prototype provided by UMBC. This implementation exploited the Inception Network v3 model
for image analysis. The experiments carried out with this initial implementation are presented
in Section 4.4.1. Since this first set of results, partially introduced also in D2, confirmed the
complexity of this model, a different lightweight implementation with different models was
produced and assessed. The results obtained with this revised version are presented in Section
4.4.2.

4.4.1 Initial implementation analysis

In this section the overall performance of the system is analysed in its initial implementation
where image analysis is performed on the inference module using Inception net, the model
initially considered for the implementation of the system. The following table (Table 3)
summarizes the scenarios for which the deployment of our system was successful:

Table 3. Initial implementation -Inception net deployment results: ¢ successful, x failed

Cloud 1 | Cloud 2 Near Far On Site | On Site | On Site
Edge Edge Edgel | Edge2 | Edge3
° ° ° . X X X

As can be seen, the deployment was successful on all the scenarios except for the three on-
site edge configurations. In those configurations, the deployment failed due to the reduced
amount of RAM available on the embedded systems considered in our experiments, which
was not sufficient for the execution of the initial implementation of the inference module.

4.4.1.1 Single edge scenario

Initially, the cloud scenarios versus the near edge (that exploit nodes from the Grid’5000
testbed) and the far edge scenarios (that exploits nodes from the Virtual Wall testbed) with
only one edge node, i.e., e=1, are considered. Scenarios with more than one edge nodes will
be presented afterwards.
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Figure 4. Image analysis performance per camera Edge scenarios.

Figure 3 and Figure 4 show the performance of the image analysis performed by the system.
Specifically, the graph on the left reports the average FPS analysed per camera, while the
graph on the right reports the average time required for the analysis of two images from the
same camera. It is worth to highlight that in the scenarios with multiple cameras the round
robin policy applied to extract enqueued frames ensures fairness among different sources
thus ensuring a comparable image analysis delay among them.

As expected, the resulting framerate for each source is significantly influenced by two factors:
the configuration of the system, i.e., cloud or edge, and the number of video sources. If the
average FPS obtained in the cloud scenario is compared with the one obtained in the edge
one, it can be noticed that, in the former, the system is capable of analysing between 4 and 1
FPS, while, in the latter, the system is not capable of analysing more than one FPS. This can be
explained with the fact that the inference module exploits a different set of GPUs available on
the node where it runs, i.e., more than one high-level GPUs in the cloud scenarios (Grid’5000
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testbed) and only one mid-level accelerator in the edge scenarios (Grid’5000 for the near edge

scenario and Virtual Wall testbed for the far edge scenario). The cloud and edge accelerators
offer different performance and results in terms of frames that can be analysed per second. If
the results obtained with an increasing number of video sources are compared, it can be
noticed that in both the cloud and edge scenarios the number of FPS is reduced significantly
when the number of sources C is increased. This is noticeable in particular in the edge
scenarios where the FPS drops significantly, reaching a value lower than 0.1 FPS with C=10.
This can be explained by considering the round robin policy adopted by the inference module
to select the frames, which divides the limited capacity of the GPU accelerators among
different video sources. If the two different cloud configurations are compared, it can be
noticed that cloud 1 configuration results in a number of FPS analysed per source slightly
higher than cloud 2. This can be explained with the fact that the cloud 1 server is equipped
with 4 GPUs instead of the 2 GPUs available in the cloud 2 server: even though cloud 2 exploits
more powerful GPUs, i.e., Nvidia A100, rather than Nvidia GeForce RTX 2080, the more GPUs
available in cloud 1, i.e., 4 vs 2, provides a slight advantage. The higher computing capabilities
offered by Nvidia A100 over Nvidia GeForce RTX 2080 do not compensate the lower level of
parallelism, which allows cloud 1 to analyse 4 frames in parallel. If the performance of the two
edge configurations is compared, it can be noticed that they result in a very small difference.
This can be explained with a small difference in the performance for the Near and Far edge
configurations, the former equipped with one Nvidia GTX 1080 Ti, the latter with one Nvidia
GTX 980. Such small difference in the performance in terms of FPS confirms again that the
performance in the image analysis mainly depends on the performance of the GPU, since the
large set of resources available to the Near edge node compared with the Far edge node (28
cores vs 6 cores / 768GB vs 12GB) does not provide a significant advantage.

The processing time for the analysis of two consecutive frames from the same source is dual
with the average FPS analysed per camera. As the number of video sources increases, the
processing time between two frames increases as well. This is due to the fact that the capacity
of the system is shared across different video sources, which reduces the capacity allocated
to each camera. If the results obtained in the cloud and edge configurations are compared, it
can be noticed that there is a significant difference between the two configurations. This
confirms that the edge scenario does not scale well with the number of video sources, due to
the availability of only one accelerator with less computing capabilities. If the results are
analysed in absolute terms, it can be noticed that, in general, the average time for a frame to
be analysed is in the order of a few seconds for the cloud configuration, however, it increases
to more than 10 seconds in the edge configuration with C=10. Considering that the generation
rate at the video source is 5 FPS, i.e., equals to one frame generated every 200ms, it follows
that the system is not capable of keeping the pace with the data generated by the cameras in
any of the considered scenarios, even in the scenario with C=1. This results in a large number
of frames that are discarded and are not analysed by the system.
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Figure 5. Overall Analysed FPS in cloud scenarios
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Figure 6. Overall Analysed FPS in the edge scenarios

In order to estimate the amount of frames that are discarded by the system, in Figure 5 and
Figure 6 the overall Analysed FPS is shown. If the Analysed FPS is compared with the nominal
input rate, i.e. 5 FPS in the C=1 scenario, 25 FPS in the C=5 scenario and 50 FPS in the C=10
scenario, it can be seen that a large number of frames are dropped by the system in both the
cloud and edge configurations, thus confirming that the overall system is not capable of
handling the large amount of frames injected by the video sources By considering the overall
Analysed FPS in absolute terms, it is evident that in both the cloud and edge configurations,
when an increasing number of video sources is considered, only a slight increase in the overall
FPS analysed can be seen on the system, thus confirming that it is rarely idle, even with one
video source.
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Figure 7. GPU, CPU and RAM utilization in the cloud scenarios
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Figure 8. GPU, CPU and RAM utilization in the edge scenarios

In order to confirm that the GPU accelerator is the bottleneck of the system, and that it limits
the overall image analysis performance, the percentage of GPU, CPU and RAM utilization is
measured on the nodes where the inference module is deployed. In Figure 7 and Figure 8 the
GPU, CPU and RAM utilization for the cloud and edge scenarios, respectively, are reported. As
can be seen, the GPU accelerators are fully utilized in all the scenarios except for the cloud 1
scenario with C=1, which results in a utilization that is still quite high, i.e., slightly below 90%.
If the CPU and RAM utilization are considered, instead, it can be seen that they are low in all
the considered scenarios, and hence do not represent a bottleneck for the performance of the
system, as all the values are below 40%. If the CPU utilization between the two cloud
configurations (both obtained with nodes from the Grid’5000 testbed) is compared, it can be
noticed that one configuration, i.e., cloud 2, results in a significantly lower utilization. This can
be explained considering the number of cores (64 cores) of the cloud 1 server, which is
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significantly higher than the number of cores available in the cloud 2 server (12 cores). The
same trend can be noticed if the CPU utilization obtained with near and far edge (28 cores in
near edge - Grid’5000 testbed nodes - vs 6 cores in far edge — Virtual Wall testbed nodes) are
compared. It is worth to highlight that in some cases, i.e., the near edge, the CPU utilization is
even lower than the CPU utilization in the cloud. This is due to the fact that in the cloud
scenarios, other processes run on the cloud node, i.e., the aggregation and the social media
analysis processes. From the analysis of the results of the RAM utilization, it emerges that the
near edge scenario results in a very low RAM utilization, if compared with the others. This can
be explained with the very large RAM capacity that characterizes the far edge node, which
offers up to 768GB.
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Figure 9. Frame analysis delay in cloud scenarios
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Figure 10. Frame analysis delay in edge scenarios

Such results confirm that the bottleneck of the system is the GPU. In order to confirm that
such bottleneck is caused by the complexity of the inference operations in the current
implementation of the system, in Figure 9 and Figure 10 the frame analysis delay is shown.
Those data report the analysis delay of the frames that are analysed and not discarded by the
inference module, in the cloud and edge configurations, respectively. As can be seen the
majority of the delay is caused by the inference time, the time required for the inference
module to analyse the frame. The transmission and queue time, instead, is very low, due to
the fact that frames are continuously replaced in the queue of the inference module, which is
configured to store only one image>, the most recent one. As can be noticed by comparing
the inference time in the cloud and in the edge scenarios, it emerges that the inference time
strictly depends on the type of the accelerator: the more powerful the accelerator is, the
shorter the inference delay is. If the inference time is analysed in absolute terms, its values
are between 1s and 2s, thus significantly higher than the time between the generation of two
frames on a single camera, confirming that the system is not capable of analysing all the
images, even in a simple scenario with a single camera (C=1), due to the complexity of the
inference algorithm. If the inference time obtained with the different configurations is
compared, it can be noticed that there is a significant difference between high-range GPUs in
the cloud and mid-range GPUs in the edge, i.e., around 1s in the cloud and up to 1.6s in the
edge. If the results obtained in the two cloud configurations are compared, however, no
substantial difference can be noticed. This explains the advantage that the cloud 1

5> Scenarios with larger queues have been analyzed and run, however, the difference in the obtained results were
negligible, therefore their presentation is omitted for the sake of brevity.
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configuration provides over the cloud 2 in terms of overall FPS analysed that was shown in
Figure 5: more parallelism provided by more GPUs, 4 in cloud 1 and 2 in cloud 2, is more
convenient than less GPUs with more computing power.
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Figure 11. Communication overhead in the cloud scenarios
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Figure 12. Communication overhead in the edge scenarios

In order to compare the communication overhead between the cloud (Grid’5000 testbed) and
the edge (Grid’5000 for the near edge scenario and Virtual Wall testbed for the far edge
scenario) configurations, in Figure 11 and Figure 12 the results of the data transmitted
between the different modules of the system are reported in the cloud and edge
configurations, respectively. Specifically, Figure 11 reports the overall data transmitted from
the cameras to the inference module running on the cloud for the cloud scenario, while Figure
12 reports the overall data transmitted from the cameras to the inference module running on
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the edge (graph on the left) and the data transmitted from the inference module to the
aggregator running on the cloud (graph on the right) for the edge scenario.

As can be seen, the cloud configuration is characterized by a significant communication
overhead, in the order of gigabytes, that increases with the number of cameras. This is due to
the fact that each camera has to transmit the video frames to the inference module on the
cloud. The same amount of data is transmitted also in the edge configuration, however, it
occurs between the cameras and the edge layer, where the inference module runs, while the
communication between the edge layer and the cloud is limited, i.e., in the order of tens of
megabytes. The latter is due to the fact that between the edge and the cloud only the results
of the inference are transmitted, which are limited in size if compared with the frames of the
video feeds.
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Figure 13. Cloud aggregation performance

Finally, in Figure 13 the performance of the aggregation module that is always deployed on
the cloud node are reported, in order to verify that the aggregation process is performed
without scalability issues. The results obtained with the cloud scenarios are omitted for the
sake of brevity since they results in similar performance. The performance is measured with
two metrics: (i) the aggregation latency, defined as the time required for the aggregator
thread to complete the aggregation of all the data received from the inference module (right
graph) and (ii) the time required by the social media thread to retrieve and analyse the tweets
(left graph). As it can be seen, the aggregation latency is very low, between 2 ms and 4 ms,
thus confirming that the aggregation process is performed without issues in a very short
amount of time. The latency of the social media thread to complete, instead, is higher if
compared with the aggregation latency, i.e., in the order of 350 ms. This is due to the fact that
the retrieval process of the latest tweets requires multiple Twitter APIs invocations, which can
take hundreds of milliseconds, thus influencing the overall latency.
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4.4.1.2 Multiple edge scenarios

In this section the results obtained with more than one edge node, i.e., e=2 ande=3, are
presented. For these experiments, only the near edge configuration is considered, since it is
the one implemented using the Grid’5000 testbed, which can provide up to 3 nodes with the
same configuration. For each scenario, the same values of C are considered, i.e., C=1, C=5 and
C=10. In this case, however, C represents the number of video sources assigned to each edge
node. The goal of those scenarios is to show that the system implementation can scale even
when multiple edge nodes are employed. For the sake of brevity in the following only a few
of the metrics evaluated are reported, as the majority of