Skip to main content
Measuring Multi-Carrier Cellular Access International Roaming Performance

Project Coordinator (EU) :

Universidad Carlos III de Madrid

Country of the EU Coordinator :

Spain

Organisation Type :

Academia

Starting date :

Measuring Multi-Carrier Cellular Access International Roaming Performance

Discovery and identification technologies

Multi-Carrier Cellular Access (MCCA) providerssuch as GoogleFi irruptedrecentlyin the mobile Internet access market claiming to offer enhanced performance at reduced prices. MCCAproviders dynamically attach to different carriers based on real time measurements of performance.The goal of the project is to do an experimental comparativestudy ofthe performance of these emerging MCCAproviders and the incumbent cellular providerswith a specialfocus on the performance while roaming.The proposed methodology is to acquire MCCAservices and traditional mobile services in the US and experimentallycompare theirperformance bothat home (US) and while roaming (EU).

Self-Certifying Names for Named Data Networking

Project Coordinator (EU) :

Athens University of Economics and Business - Research Centre (AUEB)

Country of the EU Coordinator :

Greece

Organisation Type :

Academia

Starting date :

Self-Certifying Names for Named Data Networking

Privacy and Trust enhancing technologies

The SCN4NDN project will experiment with the merger of two promising NGI technologies: Information-Centric Networking (ICN) and Decentralized Identifiers (DIDs) ICN has been on the spotlight of many research efforts for more than a decade. It has been explored as a standalone future Internet architecture, as well as an enabler for other NGI architectures, including 5G, IoT, and architectures focused on big dataand/orcyber security. ICN’s goal is to enable fast and secure content dissemination by leveraging direct and intrinsic information identification; this allows supporting multicast, multipath, and caching, as well as novel trust mechanisms.

 

Danaides

Project Coordinator (EU) :

Danaides/Sciences PO Tolouse

Country of the EU Coordinator :

France

Organisation Type :

Non-profit Organisation

Starting date :

Responsibility to protect population through peer governance and trusted community (P2PR2P)

Privacy and Trust enhancing technologies

Peer-to-Peer Responsibility to Protect (P2PR2P) is a software developed by Danaides, which provides a peer-to-peer (P2P) platform based on integrity that allows for responsible and accountable common-pool-resources governance for humanitarian and human rights collective action. P2PR2P features are validated by the GENI and FABRIC proving grounds to keep security and privacy and decentralized data governance. This system has an impact on four different field: data protection and ownership through privacy features; system accountability and impact evaluation by means of audit trail implying DLT technology; thanks to the use of gamification P2P technology helps trust and autonomy; user-driven KPI.

CERN

Project Coordinator (EU) :

CERN

Organisation Type :

Research

Starting date :

CloudBank EU NGI

Decentralised data governance - experimentation of results

Scientific research generates a vast amount of data, which pose incredible challenges to be processed. For this reason, an experimental use of CloudBank is implemented in Europe by CERN and the University California San Diego (UCSD). CloudBank provides a set of managed services to access public cloud for research, supporting specialised cost management and optimisation. The European NGI experiment is deploying cloud resources and a collection of Machine Learning and HPCaaS use-cases as part of the Large Hadron Collider's scientific program. The aim is to decide whether CloudBank can be effectively used by Europe's global research communities by addressing technological, financial, and legal challenges.

Experimental Study

Project Coordinator (EU) :

Rheinisch-Westfälische Technische Hochschule Aachen

Country of the EU Coordinator :

Germany

Organisation Type :

Academia

Starting date :

Experimental Study of Context Based Routing Using Deep Reinforcement Learning

Diversity of applications within the future Internet results in the need to support wide range of values for key performance indicators (KPIs) such as throughput, latency, delivery rate, etc. To be able to satisfy the target performance, it is crucial to make routing at the network edge intelligent. Our experiment combines machine learning techniques with contextual information like the number and type of users to build more accurate inference about the state of the network and to configure routes that are customized for different applications.

Main image

Project Coordinator (EU) :

Technological University Dublin

Country of the EU Coordinator :

Ireland

Organisation Type :

Academia

Starting date :

ATLANTIC-eVISION: Cross-Atlantic Experimental Validation of Intelligent SDN-controlled IoT Networks

Discovery and identification technologies

This project will perform experiments on public testbeds to establish the feasibility of applying OpenFlow and SDN in wireless IoT networks through five experiments: (1) automatic configuration/discovery of SDN in wireless IoT sensor networks, (2) ML- assisted control and data traffic path discovery experiments, (3) GPU and Hadoop cluster assisted experiments for ML algorithms, (4) Failure recovery intercity experiments, and (5) Scalability experiments. The US and the EU teams will provide expertise for experimentation on their respective testbeds. Also, both teams will integrate machine learning-assisted SDN control into IoT, allowing cross-Atlantic experimentation to "stress-test" the project’s novel algorithms.

Fast Quantum Key Distribution

Project Coordinator (EU) :

UNIVERSITAT POLITECNICA DE CATALUNYA

Country of the EU Coordinator :

Spain

Organisation Type :

Academia

Starting date :

Experimental Assessment of Fast Quantum Key Distribution

Privacy and Trust enhancing technologies

Quantum Key Distribution (QKD) is being used to enhance security between trusted users. One of the most fundamental QKD protocols is BB84, which uses single polarized photons as qubits. Polarized photons passing through a fiber between quantum transmitter (QTx) and quantum receiver (QRx) might be distorted in case of fiber movement affect the State of Polarization (SOP), which deteriorates the Key exchange rate. A novel QKD method that includes an Artificial Intelligence (AI) -based polarization distortion compensator module (named Fast QKD) is to be experimented in a testbed equipped with the needed instruments and devices UCDavis California, US

Fleshnet

Project Coordinator (EU) :

UNIVERSITAT POLITECNICA DE CATALUNYA

Country of the EU Coordinator :

Spain

Organisation Type :

Academia

Starting date :

Adaptive decentralized federated learning in wireless mesh network (FLESHNET)

The overall goal of the FLESHNET project is to deliver building blocks for adaptive decentralized federated learning experimentally validated in the realistic conditions of a wireless mesh network testbed. Both the EU and US partners will participate in the analysis of the experimental results. The design will be complemented by the US partners with the networking perspective, while the EU partner will complement the design with an adaptive and decentralized model.

Main image

Project Coordinator (EU) :

SICPA SPAIN S.L.

Country of the EU Coordinator :

Spain

Organisation Type :

SME

Starting date :

Inclusive verification of cross-border and level of assurance-dependent digital credentials

Decentralised data governance - experimentation of results

This experiment brings together researchers on both sides of the Atlantic, iRespond and SICPA, to connect different platforms and test security features—in this case European digital signatures, already used in legacy systems, and privacy-preserving biometric tools— to showcase enhanced levels of assurance for secure transmission of verifiable credentials across geographic boundaries.

Main image

Project Coordinator (EU) :

Technical University of Crete

Country of the EU Coordinator :

Greece

Organisation Type :

Academia

Starting date :

Secure Communication Based on Robust 3D Localization

Privacy and Trust enhancing technologies

The proposed project is on the implementation and experimentation of secure communica- tion solutions for mobile wireless networks, building on the development of robust 3D locali- zation algorithms. The secure communication solution offered will be implemented and tested on the NSF-funded POWDER/RENEW platform in Salt Lake City, UT, through a col- laboration between the Telecommunications Laboratory of the Technical University of Crete, Greece and the Center for Connected Autonomy and Artificial Intelligence, Florida Atlantic University, US. The US Partner will implement 3D localization techniques and the EU Coordi- nator will implement secure communication links using HARQ and 5G polar coding.

The 30-months project NGIatlantic.eu will push the Next Generation Internet a step further by providing cascade funding to EU-based researchers and innovators in carrying out Next Generation Internet related experiments in collaboration with US research teams.




contact action add button